Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -2,35 +2,6 @@ import gradio as gr
|
|
2 |
from transformers import pipeline
|
3 |
import torch
|
4 |
|
5 |
-
|
6 |
-
model_name = "Vira21/Whisper-Base-KhmerV2"
|
7 |
-
whisper_pipeline = pipeline(
|
8 |
-
"automatic-speech-recognition",
|
9 |
-
model=model_name,
|
10 |
-
device=0 if torch.cuda.is_available() else -1 # Use GPU if available, otherwise use CPU
|
11 |
-
)
|
12 |
|
13 |
-
|
14 |
-
try:
|
15 |
-
# Process and transcribe the audio
|
16 |
-
result = whisper_pipeline(audio)["text"]
|
17 |
-
return result
|
18 |
-
except Exception as e:
|
19 |
-
# Handle errors and return an error message
|
20 |
-
return f"An error occurred during transcription: {str(e)}"
|
21 |
-
|
22 |
-
# Gradio Interface with optimizations
|
23 |
-
interface = gr.Interface(
|
24 |
-
fn=transcribe_audio,
|
25 |
-
inputs=gr.Audio(type="filepath"),
|
26 |
-
outputs="text",
|
27 |
-
title="Whisper Khmer Speech-to-Text",
|
28 |
-
description="Upload an audio file or record your voice to get the transcription in Khmer.",
|
29 |
-
examples=[["Example Audio/126.wav"]],
|
30 |
-
allow_flagging="never" # Disables flagging to save resources
|
31 |
-
)
|
32 |
-
|
33 |
-
# Launch the app with queue enabled for better handling on free CPU
|
34 |
-
if __name__ == "__main__":
|
35 |
-
interface.queue() # Enable asynchronous queuing for better performance
|
36 |
-
interface.launch()
|
|
|
2 |
from transformers import pipeline
|
3 |
import torch
|
4 |
|
5 |
+
interface = gr.load("models/Vira21/Whisper-Base-KhmerV2")
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
|
7 |
+
interface.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|