Spaces:
Runtime error
Runtime error
Updated Agent RAG
Browse files- .gitignore +1 -0
- app.py +84 -44
- chainlit.md +16 -2
- venv/Scripts/activate +1 -1
- venv/Scripts/activate.bat +1 -1
- venv/pyvenv.cfg +1 -1
.gitignore
CHANGED
@@ -1 +1,2 @@
|
|
1 |
__pycache__/
|
|
|
|
1 |
__pycache__/
|
2 |
+
venv/
|
app.py
CHANGED
@@ -11,9 +11,16 @@ from aimakerspace.openai_utils.embedding import EmbeddingModel
|
|
11 |
from aimakerspace.vectordatabase import VectorDatabase
|
12 |
from aimakerspace.openai_utils.chatmodel import ChatOpenAI
|
13 |
import chainlit as cl
|
|
|
|
|
|
|
14 |
|
15 |
system_template = """\
|
16 |
-
Use the following context to answer
|
|
|
|
|
|
|
|
|
17 |
system_role_prompt = SystemRolePrompt(system_template)
|
18 |
|
19 |
user_prompt_template = """\
|
@@ -49,74 +56,107 @@ class RetrievalAugmentedQAPipeline:
|
|
49 |
|
50 |
text_splitter = CharacterTextSplitter()
|
51 |
|
52 |
-
|
53 |
def process_text_file(file: AskFileResponse):
|
54 |
-
|
55 |
-
|
56 |
-
with tempfile.NamedTemporaryFile(mode="w", delete=False, suffix=".txt") as temp_file:
|
57 |
temp_file_path = temp_file.name
|
58 |
-
|
59 |
-
with open(temp_file_path, "wb") as f:
|
60 |
-
f.write(file.content)
|
61 |
|
62 |
text_loader = TextFileLoader(temp_file_path)
|
63 |
documents = text_loader.load_documents()
|
64 |
texts = text_splitter.split_texts(documents)
|
65 |
return texts
|
66 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
67 |
|
68 |
@cl.on_chat_start
|
69 |
async def on_chat_start():
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
content=f"Processing `{file.name}`...", disable_human_feedback=True
|
85 |
-
)
|
86 |
-
await msg.send()
|
87 |
|
88 |
-
|
89 |
-
|
90 |
|
91 |
-
|
|
|
92 |
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
|
|
|
|
|
|
|
|
|
|
98 |
|
99 |
-
|
100 |
-
retrieval_augmented_qa_pipeline = RetrievalAugmentedQAPipeline(
|
101 |
-
vector_db_retriever=vector_db,
|
102 |
-
llm=chat_openai
|
103 |
-
)
|
104 |
-
|
105 |
-
# Let the user know that the system is ready
|
106 |
-
msg.content = f"Processing `{file.name}` done. You can now ask questions!"
|
107 |
-
await msg.update()
|
108 |
|
109 |
-
cl.user_session.set("
|
110 |
|
|
|
111 |
|
112 |
@cl.on_message
|
113 |
async def main(message):
|
114 |
chain = cl.user_session.get("chain")
|
115 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
116 |
msg = cl.Message(content="")
|
117 |
result = await chain.arun_pipeline(message.content)
|
118 |
|
119 |
async for stream_resp in result["response"]:
|
120 |
await msg.stream_token(stream_resp)
|
121 |
|
122 |
-
await msg.send()
|
|
|
11 |
from aimakerspace.vectordatabase import VectorDatabase
|
12 |
from aimakerspace.openai_utils.chatmodel import ChatOpenAI
|
13 |
import chainlit as cl
|
14 |
+
import tempfile
|
15 |
+
import pandas as pd
|
16 |
+
import pdfplumber
|
17 |
|
18 |
system_template = """\
|
19 |
+
Use the following context to answer the user's question. If you cannot find the answer in the context,
|
20 |
+
say you don't know the answer. Additionally, if the user requests a summary or context overview,
|
21 |
+
generate an engaging and concise summary that captures the main ideas with an interesting and appealing tone.
|
22 |
+
|
23 |
+
"""
|
24 |
system_role_prompt = SystemRolePrompt(system_template)
|
25 |
|
26 |
user_prompt_template = """\
|
|
|
56 |
|
57 |
text_splitter = CharacterTextSplitter()
|
58 |
|
|
|
59 |
def process_text_file(file: AskFileResponse):
|
60 |
+
with tempfile.NamedTemporaryFile(mode="wb", delete=False, suffix=".txt") as temp_file:
|
|
|
|
|
61 |
temp_file_path = temp_file.name
|
62 |
+
temp_file.write(file.content)
|
|
|
|
|
63 |
|
64 |
text_loader = TextFileLoader(temp_file_path)
|
65 |
documents = text_loader.load_documents()
|
66 |
texts = text_splitter.split_texts(documents)
|
67 |
return texts
|
68 |
|
69 |
+
def process_pdf_file(file: AskFileResponse):
|
70 |
+
with tempfile.NamedTemporaryFile(mode="wb", delete=False, suffix=".pdf") as temp_file:
|
71 |
+
temp_file_path = temp_file.name
|
72 |
+
temp_file.write(file.content)
|
73 |
+
|
74 |
+
extracted_text = ""
|
75 |
+
with pdfplumber.open(temp_file_path) as pdf:
|
76 |
+
for page in pdf.pages:
|
77 |
+
extracted_text += page.extract_text()
|
78 |
+
|
79 |
+
texts = text_splitter.split_texts([extracted_text])
|
80 |
+
return texts
|
81 |
+
|
82 |
+
def process_csv_file(file: AskFileResponse):
|
83 |
+
with tempfile.NamedTemporaryFile(mode="wb", delete=False, suffix=".csv") as temp_file:
|
84 |
+
temp_file_path = temp_file.name
|
85 |
+
temp_file.write(file.content)
|
86 |
+
|
87 |
+
df = pd.read_csv(temp_file_path)
|
88 |
+
texts = df.apply(lambda row: ' '.join(row.astype(str)), axis=1).tolist()
|
89 |
+
return text_splitter.split_texts(texts)
|
90 |
|
91 |
@cl.on_chat_start
|
92 |
async def on_chat_start():
|
93 |
+
cl.user_session.set("all_texts", [])
|
94 |
+
|
95 |
+
files = await cl.AskFileMessage(
|
96 |
+
content="Please upload one or more Text, PDF, or CSV files to begin!",
|
97 |
+
accept=["text/plain", "application/pdf", "text/csv"],
|
98 |
+
max_size_mb=20,
|
99 |
+
timeout=180,
|
100 |
+
).send()
|
101 |
+
|
102 |
+
if not files:
|
103 |
+
await cl.Message(content="No files were uploaded. Please upload at least one file to proceed.").send()
|
104 |
+
return
|
105 |
+
|
106 |
+
all_texts = cl.user_session.get("all_texts", [])
|
|
|
|
|
|
|
107 |
|
108 |
+
for file in files:
|
109 |
+
file_type = file.name.split(".")[-1].lower()
|
110 |
|
111 |
+
msg = cl.Message(content=f"Processing `{file.name}`...", disable_human_feedback=True)
|
112 |
+
await msg.send()
|
113 |
|
114 |
+
# Process each file based on its type
|
115 |
+
if file_type == "txt":
|
116 |
+
texts = process_text_file(file)
|
117 |
+
elif file_type == "pdf":
|
118 |
+
texts = process_pdf_file(file)
|
119 |
+
elif file_type == "csv":
|
120 |
+
texts = process_csv_file(file)
|
121 |
+
else:
|
122 |
+
await cl.Message(content=f"Unsupported file type: `{file.name}`. Please upload text, PDF, or CSV files.").send()
|
123 |
+
continue
|
124 |
|
125 |
+
all_texts.extend(texts) # Combine texts from all uploaded files
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
126 |
|
127 |
+
cl.user_session.set("all_texts", all_texts)
|
128 |
|
129 |
+
await cl.Message(content="Files processed! You can now start asking questions.").send()
|
130 |
|
131 |
@cl.on_message
|
132 |
async def main(message):
|
133 |
chain = cl.user_session.get("chain")
|
134 |
|
135 |
+
if not chain:
|
136 |
+
all_texts = cl.user_session.get("all_texts")
|
137 |
+
if not all_texts:
|
138 |
+
await cl.Message(content="Please upload at least one file before asking questions.").send()
|
139 |
+
return
|
140 |
+
|
141 |
+
# Create a dict vector store
|
142 |
+
vector_db = VectorDatabase()
|
143 |
+
vector_db = await vector_db.abuild_from_list(all_texts)
|
144 |
+
|
145 |
+
chat_openai = ChatOpenAI()
|
146 |
+
|
147 |
+
# Create a chain
|
148 |
+
retrieval_augmented_qa_pipeline = RetrievalAugmentedQAPipeline(
|
149 |
+
vector_db_retriever=vector_db,
|
150 |
+
llm=chat_openai
|
151 |
+
)
|
152 |
+
|
153 |
+
cl.user_session.set("chain", retrieval_augmented_qa_pipeline)
|
154 |
+
chain = retrieval_augmented_qa_pipeline
|
155 |
+
|
156 |
msg = cl.Message(content="")
|
157 |
result = await chain.arun_pipeline(message.content)
|
158 |
|
159 |
async for stream_resp in result["response"]:
|
160 |
await msg.stream_token(stream_resp)
|
161 |
|
162 |
+
await msg.send()
|
chainlit.md
CHANGED
@@ -1,3 +1,17 @@
|
|
1 |
-
#
|
2 |
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# โจ๐ฎ Dive into Data Magic with Chat-to-Chart! ๐๐ฌ
|
2 |
|
3 |
+
Welcome to the ultimate AI-powered assistant, designed especially for **Business Owners**, **Stakeholders**, **CEOs**, and other **non-technical professionals**! ๐ผ๐
|
4 |
+
|
5 |
+
Seamlessly interact with your data by uploading:
|
6 |
+
- ๐ **Text Files** (under 2MB)
|
7 |
+
- ๐ **PDFs**
|
8 |
+
- ๐ **CSV Files**
|
9 |
+
|
10 |
+
๐ **Connect directly to your database** and let the insights flow! Whether you need:
|
11 |
+
- ๐ง **Instant answers** and insights from your files or database
|
12 |
+
- ๐ **Effortless SQL querying** in plain language
|
13 |
+
- ๐ **Dynamic charts** (bar, line, pie) to visualize your data
|
14 |
+
|
15 |
+
This tool is all about transforming complex data into clear, actionable insights โ as easy as having a conversation! ๐๐ค
|
16 |
+
|
17 |
+
Itโs not just data analysis; itโs **Chat-to-Chart**! ๐๐ฌ Upload your files, connect your database, and watch the magic happen. โจ
|
venv/Scripts/activate
CHANGED
@@ -35,7 +35,7 @@ deactivate () {
|
|
35 |
# unset irrelevant variables
|
36 |
deactivate nondestructive
|
37 |
|
38 |
-
VIRTUAL_ENV="D:\DataTicon\AIE4 Pythonic RAG\AIE4-DeployPythonicRAG\venv"
|
39 |
export VIRTUAL_ENV
|
40 |
|
41 |
_OLD_VIRTUAL_PATH="$PATH"
|
|
|
35 |
# unset irrelevant variables
|
36 |
deactivate nondestructive
|
37 |
|
38 |
+
VIRTUAL_ENV="D:\DataTicon\AIE4 Pythonic RAG - Copy\AIE4-DeployPythonicRAG\venv"
|
39 |
export VIRTUAL_ENV
|
40 |
|
41 |
_OLD_VIRTUAL_PATH="$PATH"
|
venv/Scripts/activate.bat
CHANGED
@@ -8,7 +8,7 @@ if defined _OLD_CODEPAGE (
|
|
8 |
"%SystemRoot%\System32\chcp.com" 65001 > nul
|
9 |
)
|
10 |
|
11 |
-
set VIRTUAL_ENV=D:\DataTicon\AIE4 Pythonic RAG\AIE4-DeployPythonicRAG\venv
|
12 |
|
13 |
if not defined PROMPT set PROMPT=$P$G
|
14 |
|
|
|
8 |
"%SystemRoot%\System32\chcp.com" 65001 > nul
|
9 |
)
|
10 |
|
11 |
+
set VIRTUAL_ENV=D:\DataTicon\AIE4 Pythonic RAG - Copy\AIE4-DeployPythonicRAG\venv
|
12 |
|
13 |
if not defined PROMPT set PROMPT=$P$G
|
14 |
|
venv/pyvenv.cfg
CHANGED
@@ -2,4 +2,4 @@ home = C:\Users\USER\anaconda3
|
|
2 |
include-system-site-packages = false
|
3 |
version = 3.11.7
|
4 |
executable = C:\Users\USER\anaconda3\python.exe
|
5 |
-
command = C:\Users\USER\anaconda3\python.exe -m venv D:\DataTicon\AIE4 Pythonic RAG\AIE4-DeployPythonicRAG\venv
|
|
|
2 |
include-system-site-packages = false
|
3 |
version = 3.11.7
|
4 |
executable = C:\Users\USER\anaconda3\python.exe
|
5 |
+
command = C:\Users\USER\anaconda3\python.exe -m venv D:\DataTicon\AIE4 Pythonic RAG - Copy\AIE4-DeployPythonicRAG\venv
|