Vinushaanth commited on
Commit
6ec3445
·
verified ·
1 Parent(s): 37312ad

Update src/streamlit_app.py

Browse files
Files changed (1) hide show
  1. src/streamlit_app.py +28 -39
src/streamlit_app.py CHANGED
@@ -1,40 +1,29 @@
1
- import altair as alt
2
- import numpy as np
3
- import pandas as pd
4
  import streamlit as st
5
-
6
- """
7
- # Welcome to Streamlit!
8
-
9
- Edit `/streamlit_app.py` to customize this app to your heart's desire :heart:.
10
- If you have any questions, checkout our [documentation](https://docs.streamlit.io) and [community
11
- forums](https://discuss.streamlit.io).
12
-
13
- In the meantime, below is an example of what you can do with just a few lines of code:
14
- """
15
-
16
- num_points = st.slider("Number of points in spiral", 1, 10000, 1100)
17
- num_turns = st.slider("Number of turns in spiral", 1, 300, 31)
18
-
19
- indices = np.linspace(0, 1, num_points)
20
- theta = 2 * np.pi * num_turns * indices
21
- radius = indices
22
-
23
- x = radius * np.cos(theta)
24
- y = radius * np.sin(theta)
25
-
26
- df = pd.DataFrame({
27
- "x": x,
28
- "y": y,
29
- "idx": indices,
30
- "rand": np.random.randn(num_points),
31
- })
32
-
33
- st.altair_chart(alt.Chart(df, height=700, width=700)
34
- .mark_point(filled=True)
35
- .encode(
36
- x=alt.X("x", axis=None),
37
- y=alt.Y("y", axis=None),
38
- color=alt.Color("idx", legend=None, scale=alt.Scale()),
39
- size=alt.Size("rand", legend=None, scale=alt.Scale(range=[1, 150])),
40
- ))
 
 
 
 
1
  import streamlit as st
2
+ from transformers import AutoTokenizer, AutoModelForCausalLM
3
+
4
+ # Load model
5
+ MODEL_NAME = "Vinushaanth/metaphor-create-withoutlora" # replace with your HF model repo
6
+ tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
7
+ model = AutoModelForCausalLM.from_pretrained(MODEL_NAME)
8
+
9
+ # Streamlit app
10
+ st.set_page_config(page_title="Metaphor Assistant", layout="wide")
11
+
12
+ st.title("✨ Metaphor & Lyric Assistant")
13
+ st.write("Generate poetic Tamil lines with figurative language.")
14
+
15
+ # Input form
16
+ prompt = st.text_area("Enter your phrase or theme:", height=120)
17
+
18
+ max_len = st.slider("Max Output Length", 30, 200, 80)
19
+
20
+ if st.button("Generate"):
21
+ if prompt.strip() == "":
22
+ st.warning("Please enter some text.")
23
+ else:
24
+ with st.spinner("Generating..."):
25
+ inputs = tokenizer(prompt, return_tensors="pt")
26
+ outputs = model.generate(**inputs, max_length=max_len, do_sample=True, top_p=0.9, temperature=0.7)
27
+ result = tokenizer.decode(outputs[0], skip_special_tokens=True)
28
+ st.success("✅ Generated Text")
29
+ st.write(result)