Spaces:
Sleeping
Sleeping
import joblib | |
import pandas as pd | |
import numpy as np | |
from sklearn.preprocessing import StandardScaler, OneHotEncoder | |
from sklearn.compose import make_column_transformer | |
from sklearn.impute import SimpleImputer | |
from sklearn.pipeline import Pipeline | |
from sklearn.model_selection import train_test_split | |
from sklearn.ensemble import RandomForestRegressor | |
from sklearn.metrics import mean_squared_error, r2_score, mean_absolute_error | |
# Load the dataset | |
df = pd.read_csv("insurance.csv") | |
# Define features and target | |
target = 'charges' | |
numerical_features = ['age', 'bmi', 'children'] | |
categorical_features = ['sex', 'smoker', 'region'] | |
print("Creating data subsets") | |
X = df[numerical_features + categorical_features] | |
y = df[target] | |
Xtrain, Xtest, ytrain, ytest = train_test_split( | |
X, y, | |
test_size=0.2, | |
random_state=42 | |
) | |
# Define the numerical and categorical pipelines | |
numerical_pipeline = Pipeline([ | |
('imputer', SimpleImputer(strategy='median')), | |
('scaler', StandardScaler()) | |
]) | |
categorical_pipeline = Pipeline([ | |
('imputer', SimpleImputer(strategy='most_frequent')), | |
('onehot', OneHotEncoder(handle_unknown='ignore')) | |
]) | |
preprocessor = make_column_transformer( | |
(numerical_pipeline, numerical_features), | |
(categorical_pipeline, categorical_features) | |
) | |
# Define the Random Forest model with the best parameters | |
model_random_forest = RandomForestRegressor( | |
n_estimators=125, | |
min_samples_split=3, | |
min_samples_leaf=4, | |
max_depth=25, | |
random_state=42, | |
n_jobs=-1 | |
) | |
print("Estimating Best Model Pipeline") | |
model_pipeline = Pipeline([ | |
('preprocessor', preprocessor), | |
('regressor', model_random_forest) | |
]) | |
# Train the model | |
model_pipeline.fit(Xtrain, ytrain) | |
# Predict on the test set | |
y_pred = model_pipeline.predict(Xtest) | |
# Calculate evaluation metrics | |
mae = mean_absolute_error(ytest, y_pred) | |
mse = mean_squared_error(ytest, y_pred) | |
rmse = np.sqrt(mse) | |
r2 = r2_score(ytest, y_pred) | |
print("Logging Metrics") | |
print(f"Mean Absolute Error (MAE): {mae}") | |
print(f"Mean Squared Error (MSE): {mse}") | |
print(f"Root Mean Squared Error (RMSE): {rmse}") | |
print(f"R-squared (R²): {r2}") | |
print("Serializing Model") | |
# Save the model to a file | |
saved_model_path = "random_forest_pipeline.pkl" | |
joblib.dump(model_pipeline, saved_model_path) | |
print(f"Model saved as {saved_model_path}") | |