Spaces:
Running
on
Zero
Running
on
Zero
Upload folder using huggingface_hub
Browse files- src/__init__.py +1 -0
- src/ai/__init__.py +7 -0
- src/ai/diarization.py +338 -0
- src/ai/prompts_config.py +204 -0
- src/ai/voxtral_spaces_analyzer.py +398 -0
- src/ui/__init__.py +1 -0
- src/ui/spaces_interface.py +666 -0
- src/utils/__init__.py +6 -0
- src/utils/token_tracker.py +64 -0
- src/utils/zero_gpu_manager.py +115 -0
src/__init__.py
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
"""MeetingNotes Hugging Face Spaces package."""
|
src/ai/__init__.py
ADDED
|
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""AI modules for HF Spaces version."""
|
| 2 |
+
|
| 3 |
+
from .voxtral_spaces_analyzer import VoxtralSpacesAnalyzer
|
| 4 |
+
from .diarization import SpeakerDiarization
|
| 5 |
+
from .prompts_config import VoxtralPrompts
|
| 6 |
+
|
| 7 |
+
__all__ = ['VoxtralSpacesAnalyzer', 'SpeakerDiarization', 'VoxtralPrompts']
|
src/ai/diarization.py
ADDED
|
@@ -0,0 +1,338 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
Speaker diarization module for HF Spaces with Zero GPU support.
|
| 3 |
+
|
| 4 |
+
This module uses pyannote/speaker-diarization-3.1 to identify
|
| 5 |
+
and segment different speakers in an audio file, optimized for HF Spaces.
|
| 6 |
+
"""
|
| 7 |
+
|
| 8 |
+
import torch
|
| 9 |
+
import torchaudio
|
| 10 |
+
from pyannote.audio import Pipeline
|
| 11 |
+
from typing import Optional, Dict, Any, List, Tuple
|
| 12 |
+
import tempfile
|
| 13 |
+
import os
|
| 14 |
+
from pydub import AudioSegment
|
| 15 |
+
import time
|
| 16 |
+
|
| 17 |
+
from ..utils.zero_gpu_manager import gpu_model_loading, gpu_inference, ZeroGPUManager
|
| 18 |
+
|
| 19 |
+
|
| 20 |
+
class SpeakerDiarization:
|
| 21 |
+
"""
|
| 22 |
+
Speaker diarization using pyannote/speaker-diarization-3.1 for HF Spaces.
|
| 23 |
+
|
| 24 |
+
This class handles automatic speaker diarization
|
| 25 |
+
with Zero GPU decorators for efficient compute allocation.
|
| 26 |
+
"""
|
| 27 |
+
|
| 28 |
+
def __init__(self, hf_token: str = None):
|
| 29 |
+
"""
|
| 30 |
+
Initialize the pyannote diarizer for HF Spaces.
|
| 31 |
+
|
| 32 |
+
Args:
|
| 33 |
+
hf_token (str): Hugging Face token to access the model
|
| 34 |
+
"""
|
| 35 |
+
self.hf_token = hf_token or os.getenv("HF_TOKEN")
|
| 36 |
+
self.pipeline = None
|
| 37 |
+
self.gpu_manager = ZeroGPUManager()
|
| 38 |
+
print("๐ Initializing pyannote diarizer for HF Spaces...")
|
| 39 |
+
|
| 40 |
+
@gpu_model_loading(duration=90)
|
| 41 |
+
def _load_pipeline(self):
|
| 42 |
+
"""Load diarization pipeline with GPU allocation if not already loaded."""
|
| 43 |
+
if self.pipeline is None:
|
| 44 |
+
print("๐ฅ Loading pyannote/speaker-diarization-3.1 model...")
|
| 45 |
+
self.pipeline = Pipeline.from_pretrained(
|
| 46 |
+
"pyannote/speaker-diarization-3.1",
|
| 47 |
+
use_auth_token=self.hf_token
|
| 48 |
+
)
|
| 49 |
+
|
| 50 |
+
# Use GPU if available (CUDA or MPS)
|
| 51 |
+
if self.gpu_manager.is_gpu_available():
|
| 52 |
+
device = self.gpu_manager.get_device()
|
| 53 |
+
if device == "mps":
|
| 54 |
+
# MPS support for local Mac testing
|
| 55 |
+
self.pipeline = self.pipeline.to(torch.device("mps"))
|
| 56 |
+
print("๐ Pyannote pipeline loaded on MPS (Apple Silicon)")
|
| 57 |
+
elif device == "cuda":
|
| 58 |
+
self.pipeline = self.pipeline.to(torch.device("cuda"))
|
| 59 |
+
print("๐ Pyannote pipeline loaded on CUDA")
|
| 60 |
+
else:
|
| 61 |
+
print("โ ๏ธ Pyannote pipeline loaded on CPU")
|
| 62 |
+
else:
|
| 63 |
+
print("โ ๏ธ Pyannote pipeline loaded on CPU")
|
| 64 |
+
|
| 65 |
+
@gpu_inference(duration=180)
|
| 66 |
+
def diarize_audio(self, audio_path: str, num_speakers: Optional[int] = None) -> Tuple[str, List[Dict]]:
|
| 67 |
+
"""
|
| 68 |
+
Perform speaker diarization on an audio file with Zero GPU.
|
| 69 |
+
|
| 70 |
+
Args:
|
| 71 |
+
audio_path (str): Path to the audio file
|
| 72 |
+
num_speakers (Optional[int]): Expected number of speakers (optional)
|
| 73 |
+
|
| 74 |
+
Returns:
|
| 75 |
+
Tuple[str, List[Dict]]: (RTTM result, List of reference segments for each speaker)
|
| 76 |
+
"""
|
| 77 |
+
try:
|
| 78 |
+
# Load pipeline if necessary
|
| 79 |
+
self._load_pipeline()
|
| 80 |
+
|
| 81 |
+
print(f"๐ค Starting diarization: {audio_path}")
|
| 82 |
+
|
| 83 |
+
# Prepare audio file for pyannote (mono WAV)
|
| 84 |
+
processed_audio_path = self._prepare_audio_for_pyannote(audio_path)
|
| 85 |
+
|
| 86 |
+
# Diarization parameters
|
| 87 |
+
diarization_params = {}
|
| 88 |
+
if num_speakers is not None:
|
| 89 |
+
diarization_params["num_speakers"] = num_speakers
|
| 90 |
+
print(f"๐ฅ Specified number of speakers: {num_speakers}")
|
| 91 |
+
|
| 92 |
+
# Perform diarization
|
| 93 |
+
print("๐ Speaker analysis in progress...")
|
| 94 |
+
diarization = self.pipeline(processed_audio_path, **diarization_params)
|
| 95 |
+
|
| 96 |
+
# Convert to RTTM format
|
| 97 |
+
rttm_output = self._convert_to_rttm(diarization, audio_path)
|
| 98 |
+
|
| 99 |
+
# Extract reference segments (first long segments for each speaker)
|
| 100 |
+
try:
|
| 101 |
+
reference_segments = self._extract_reference_segments(diarization, audio_path, min_duration=5.0)
|
| 102 |
+
except Exception as ref_error:
|
| 103 |
+
print(f"โ ๏ธ Error extracting reference segments: {ref_error}")
|
| 104 |
+
reference_segments = []
|
| 105 |
+
|
| 106 |
+
print(f"โ
Diarization completed: {len(diarization)} segments detected")
|
| 107 |
+
print(f"๐ค Reference segments created: {len(reference_segments)} speakers")
|
| 108 |
+
|
| 109 |
+
# Clean up temporary file if created
|
| 110 |
+
if processed_audio_path != audio_path:
|
| 111 |
+
try:
|
| 112 |
+
os.unlink(processed_audio_path)
|
| 113 |
+
except:
|
| 114 |
+
pass
|
| 115 |
+
|
| 116 |
+
return rttm_output, reference_segments
|
| 117 |
+
|
| 118 |
+
except Exception as e:
|
| 119 |
+
print(f"โ Error during diarization: {e}")
|
| 120 |
+
return f"โ Error during diarization: {str(e)}", []
|
| 121 |
+
finally:
|
| 122 |
+
# Clean up GPU memory
|
| 123 |
+
self.gpu_manager.cleanup_gpu()
|
| 124 |
+
|
| 125 |
+
def _prepare_audio_for_pyannote(self, audio_path: str) -> str:
|
| 126 |
+
"""
|
| 127 |
+
Prepare audio file for pyannote (mono WAV if necessary).
|
| 128 |
+
|
| 129 |
+
Args:
|
| 130 |
+
audio_path (str): Path to original audio file
|
| 131 |
+
|
| 132 |
+
Returns:
|
| 133 |
+
str: Path to prepared audio file
|
| 134 |
+
"""
|
| 135 |
+
try:
|
| 136 |
+
# Load audio with pydub to check format
|
| 137 |
+
audio = AudioSegment.from_file(audio_path)
|
| 138 |
+
|
| 139 |
+
# Check if conversion is needed (mono + WAV)
|
| 140 |
+
needs_conversion = (
|
| 141 |
+
audio.channels != 1 or # Not mono
|
| 142 |
+
not audio_path.lower().endswith('.wav') # Not WAV
|
| 143 |
+
)
|
| 144 |
+
|
| 145 |
+
if not needs_conversion:
|
| 146 |
+
print("๐ต Audio already in correct format for pyannote")
|
| 147 |
+
return audio_path
|
| 148 |
+
|
| 149 |
+
print("๐ Converting audio for pyannote (mono WAV)...")
|
| 150 |
+
|
| 151 |
+
# Convert to mono WAV
|
| 152 |
+
mono_audio = audio.set_channels(1)
|
| 153 |
+
|
| 154 |
+
# Create temporary file
|
| 155 |
+
with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as tmp_file:
|
| 156 |
+
temp_path = tmp_file.name
|
| 157 |
+
|
| 158 |
+
# Export as mono WAV
|
| 159 |
+
mono_audio.export(temp_path, format="wav")
|
| 160 |
+
|
| 161 |
+
print(f"โ
Audio converted: {temp_path}")
|
| 162 |
+
return temp_path
|
| 163 |
+
|
| 164 |
+
except Exception as e:
|
| 165 |
+
print(f"โ ๏ธ Audio conversion error: {e}, using original file")
|
| 166 |
+
return audio_path
|
| 167 |
+
|
| 168 |
+
def _convert_to_rttm(self, diarization, audio_file: str) -> str:
|
| 169 |
+
"""
|
| 170 |
+
Convert diarization result to RTTM format.
|
| 171 |
+
|
| 172 |
+
Args:
|
| 173 |
+
diarization: Pyannote diarization object
|
| 174 |
+
audio_file (str): Audio filename for RTTM
|
| 175 |
+
|
| 176 |
+
Returns:
|
| 177 |
+
str: RTTM format content
|
| 178 |
+
"""
|
| 179 |
+
rttm_lines = []
|
| 180 |
+
|
| 181 |
+
# RTTM header
|
| 182 |
+
audio_filename = os.path.basename(audio_file)
|
| 183 |
+
|
| 184 |
+
for segment, _, speaker in diarization.itertracks(yield_label=True):
|
| 185 |
+
# RTTM format: SPEAKER file 1 start_time duration <NA> <NA> speaker_id <NA> <NA>
|
| 186 |
+
start_time = segment.start
|
| 187 |
+
duration = segment.duration
|
| 188 |
+
|
| 189 |
+
rttm_line = f"SPEAKER {audio_filename} 1 {start_time:.3f} {duration:.3f} <NA> <NA> {speaker} <NA> <NA>"
|
| 190 |
+
rttm_lines.append(rttm_line)
|
| 191 |
+
|
| 192 |
+
return "\n".join(rttm_lines)
|
| 193 |
+
|
| 194 |
+
def _extract_reference_segments(self, diarization, audio_path: str, min_duration: float = 5.0) -> List[Dict]:
|
| 195 |
+
"""
|
| 196 |
+
Extract first long segment for each speaker as reference.
|
| 197 |
+
|
| 198 |
+
Args:
|
| 199 |
+
diarization: Pyannote diarization object
|
| 200 |
+
audio_path (str): Path to audio file
|
| 201 |
+
min_duration (float): Minimum duration in seconds for a reference segment
|
| 202 |
+
|
| 203 |
+
Returns:
|
| 204 |
+
List[Dict]: List of reference segments with metadata
|
| 205 |
+
"""
|
| 206 |
+
reference_segments = []
|
| 207 |
+
speakers_found = set()
|
| 208 |
+
|
| 209 |
+
print(f"๐ Searching for reference segments (>{min_duration}s) for each speaker...")
|
| 210 |
+
|
| 211 |
+
# Iterate through all segments to find first long segment of each speaker
|
| 212 |
+
try:
|
| 213 |
+
for segment, _, speaker in diarization.itertracks(yield_label=True):
|
| 214 |
+
if speaker not in speakers_found and segment.duration >= min_duration:
|
| 215 |
+
print(f"๐ค {speaker}: {segment.duration:.1f}s segment found ({segment.start:.1f}s-{segment.end:.1f}s)")
|
| 216 |
+
|
| 217 |
+
# Create audio snippet
|
| 218 |
+
snippet_path = self._create_audio_snippet(
|
| 219 |
+
audio_path,
|
| 220 |
+
segment.start,
|
| 221 |
+
segment.end,
|
| 222 |
+
speaker
|
| 223 |
+
)
|
| 224 |
+
|
| 225 |
+
if snippet_path:
|
| 226 |
+
reference_segments.append({
|
| 227 |
+
'speaker': speaker,
|
| 228 |
+
'start': segment.start,
|
| 229 |
+
'end': segment.end,
|
| 230 |
+
'duration': segment.duration,
|
| 231 |
+
'audio_path': snippet_path
|
| 232 |
+
})
|
| 233 |
+
speakers_found.add(speaker)
|
| 234 |
+
|
| 235 |
+
# Fallback: if no long segments found for some speakers, take the longest
|
| 236 |
+
all_speakers_in_diarization = set(speaker for _, _, speaker in diarization.itertracks(yield_label=True))
|
| 237 |
+
if len(speakers_found) < len(all_speakers_in_diarization):
|
| 238 |
+
print("โ ๏ธ Some speakers don't have long segments, using longest segments...")
|
| 239 |
+
self._add_fallback_segments(diarization, audio_path, reference_segments, speakers_found, min_duration)
|
| 240 |
+
|
| 241 |
+
except Exception as iter_error:
|
| 242 |
+
print(f"โ Error iterating segments: {iter_error}")
|
| 243 |
+
reference_segments = []
|
| 244 |
+
|
| 245 |
+
return reference_segments
|
| 246 |
+
|
| 247 |
+
def _add_fallback_segments(self, diarization, audio_path: str, reference_segments: List[Dict],
|
| 248 |
+
speakers_found: set, min_duration: float):
|
| 249 |
+
"""Add fallback segments for speakers without long segments."""
|
| 250 |
+
all_speakers = set(speaker for _, _, speaker in diarization.itertracks(yield_label=True))
|
| 251 |
+
missing_speakers = all_speakers - speakers_found
|
| 252 |
+
|
| 253 |
+
for speaker in missing_speakers:
|
| 254 |
+
# Find longest segment for this speaker
|
| 255 |
+
longest_segment = None
|
| 256 |
+
longest_duration = 0
|
| 257 |
+
|
| 258 |
+
for segment, _, spk in diarization.itertracks(yield_label=True):
|
| 259 |
+
if spk == speaker and segment.duration > longest_duration:
|
| 260 |
+
longest_segment = segment
|
| 261 |
+
longest_duration = segment.duration
|
| 262 |
+
|
| 263 |
+
if longest_segment and longest_duration > 1.0: # At least 1 second
|
| 264 |
+
print(f"๐ค {speaker}: fallback segment of {longest_duration:.1f}s")
|
| 265 |
+
|
| 266 |
+
snippet_path = self._create_audio_snippet(
|
| 267 |
+
audio_path,
|
| 268 |
+
longest_segment.start,
|
| 269 |
+
longest_segment.end,
|
| 270 |
+
speaker
|
| 271 |
+
)
|
| 272 |
+
|
| 273 |
+
if snippet_path:
|
| 274 |
+
reference_segments.append({
|
| 275 |
+
'speaker': speaker,
|
| 276 |
+
'start': longest_segment.start,
|
| 277 |
+
'end': longest_segment.end,
|
| 278 |
+
'duration': longest_duration,
|
| 279 |
+
'audio_path': snippet_path
|
| 280 |
+
})
|
| 281 |
+
|
| 282 |
+
def _create_audio_snippet(self, audio_path: str, start_time: float, end_time: float, speaker: str) -> Optional[str]:
|
| 283 |
+
"""
|
| 284 |
+
Create temporary audio snippet for a speaker segment.
|
| 285 |
+
|
| 286 |
+
Args:
|
| 287 |
+
audio_path (str): Path to source audio file
|
| 288 |
+
start_time (float): Start in seconds
|
| 289 |
+
end_time (float): End in seconds
|
| 290 |
+
speaker (str): Speaker ID
|
| 291 |
+
|
| 292 |
+
Returns:
|
| 293 |
+
Optional[str]: Path to created temporary audio snippet or None if error
|
| 294 |
+
"""
|
| 295 |
+
try:
|
| 296 |
+
# Load audio
|
| 297 |
+
audio = AudioSegment.from_file(audio_path)
|
| 298 |
+
|
| 299 |
+
# Convert to milliseconds
|
| 300 |
+
start_ms = int(start_time * 1000)
|
| 301 |
+
end_ms = int(end_time * 1000)
|
| 302 |
+
|
| 303 |
+
# Extract segment
|
| 304 |
+
segment = audio[start_ms:end_ms]
|
| 305 |
+
|
| 306 |
+
# Create temporary file
|
| 307 |
+
with tempfile.NamedTemporaryFile(
|
| 308 |
+
suffix=f"_{speaker}_{start_time:.1f}s.wav",
|
| 309 |
+
delete=False
|
| 310 |
+
) as tmp_file:
|
| 311 |
+
snippet_path = tmp_file.name
|
| 312 |
+
|
| 313 |
+
# Export snippet to temporary file
|
| 314 |
+
segment.export(snippet_path, format="wav")
|
| 315 |
+
|
| 316 |
+
print(f"๐ต Temporary snippet created: {snippet_path}")
|
| 317 |
+
return snippet_path
|
| 318 |
+
|
| 319 |
+
except Exception as e:
|
| 320 |
+
print(f"โ Error creating snippet for {speaker}: {e}")
|
| 321 |
+
return None
|
| 322 |
+
|
| 323 |
+
def cleanup(self):
|
| 324 |
+
"""Release pipeline resources."""
|
| 325 |
+
if self.pipeline is not None:
|
| 326 |
+
# Free GPU/MPS memory by moving to CPU
|
| 327 |
+
if hasattr(self.pipeline, 'to'):
|
| 328 |
+
try:
|
| 329 |
+
self.pipeline = self.pipeline.to(torch.device('cpu'))
|
| 330 |
+
except Exception as e:
|
| 331 |
+
print(f"โ ๏ธ Error moving to CPU: {e}")
|
| 332 |
+
|
| 333 |
+
del self.pipeline
|
| 334 |
+
self.pipeline = None
|
| 335 |
+
|
| 336 |
+
# Clean up memory
|
| 337 |
+
self.gpu_manager.cleanup_gpu()
|
| 338 |
+
print("๐งน Pyannote pipeline freed from memory")
|
src/ai/prompts_config.py
ADDED
|
@@ -0,0 +1,204 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
Centralized prompts configuration for Voxtral in HF Spaces.
|
| 3 |
+
|
| 4 |
+
This module contains all prompts used by Voxtral analyzers
|
| 5 |
+
for different types of analyses and processing modes.
|
| 6 |
+
"""
|
| 7 |
+
|
| 8 |
+
|
| 9 |
+
class VoxtralPrompts:
|
| 10 |
+
"""Class containing all system prompts for Voxtral."""
|
| 11 |
+
|
| 12 |
+
# ====================================
|
| 13 |
+
# AVAILABLE SECTIONS FOR SUMMARIES
|
| 14 |
+
# Note: Titles are in English but the AI will adapt language based on meeting content
|
| 15 |
+
# ====================================
|
| 16 |
+
|
| 17 |
+
AVAILABLE_SECTIONS = {
|
| 18 |
+
"resume_executif": {
|
| 19 |
+
"title": "## EXECUTIVE SUMMARY",
|
| 20 |
+
"description": "Overview of the purpose of this meeting segment and its outcomes",
|
| 21 |
+
"default_action": True,
|
| 22 |
+
"default_info": True
|
| 23 |
+
},
|
| 24 |
+
"discussions_principales": {
|
| 25 |
+
"title": "## MAIN DISCUSSIONS",
|
| 26 |
+
"description": "Main topics addressed and important points raised",
|
| 27 |
+
"default_action": True,
|
| 28 |
+
"default_info": False
|
| 29 |
+
},
|
| 30 |
+
"sujets_principaux": {
|
| 31 |
+
"title": "## MAIN TOPICS",
|
| 32 |
+
"description": "Key topics discussed and information presented",
|
| 33 |
+
"default_action": False,
|
| 34 |
+
"default_info": True
|
| 35 |
+
},
|
| 36 |
+
"plan_action": {
|
| 37 |
+
"title": "## ACTION PLAN",
|
| 38 |
+
"description": "Complete list of actions with:\n- Specific tasks and deliverables\n- Assigned responsibilities\n- Deadlines and timelines\n- Priority levels",
|
| 39 |
+
"default_action": True,
|
| 40 |
+
"default_info": False
|
| 41 |
+
},
|
| 42 |
+
"decisions_prises": {
|
| 43 |
+
"title": "## DECISIONS MADE",
|
| 44 |
+
"description": "All decisions made during this segment",
|
| 45 |
+
"default_action": True,
|
| 46 |
+
"default_info": False
|
| 47 |
+
},
|
| 48 |
+
"points_importants": {
|
| 49 |
+
"title": "## KEY POINTS",
|
| 50 |
+
"description": "Important discoveries, data or insights shared",
|
| 51 |
+
"default_action": False,
|
| 52 |
+
"default_info": True
|
| 53 |
+
},
|
| 54 |
+
"questions_discussions": {
|
| 55 |
+
"title": "## QUESTIONS & DISCUSSIONS",
|
| 56 |
+
"description": "Main questions asked and discussions held",
|
| 57 |
+
"default_action": False,
|
| 58 |
+
"default_info": True
|
| 59 |
+
},
|
| 60 |
+
"prochaines_etapes": {
|
| 61 |
+
"title": "## NEXT STEPS",
|
| 62 |
+
"description": "Follow-up actions and planned future meetings",
|
| 63 |
+
"default_action": True,
|
| 64 |
+
"default_info": False
|
| 65 |
+
},
|
| 66 |
+
"elements_suivi": {
|
| 67 |
+
"title": "## FOLLOW-UP ELEMENTS",
|
| 68 |
+
"description": "Follow-up information or clarifications needed",
|
| 69 |
+
"default_action": False,
|
| 70 |
+
"default_info": True
|
| 71 |
+
}
|
| 72 |
+
}
|
| 73 |
+
|
| 74 |
+
@staticmethod
|
| 75 |
+
def get_meeting_summary_prompt(selected_sections: list, speaker_references: str = "", chunk_info: str = "", previous_context: str = "") -> str:
|
| 76 |
+
"""
|
| 77 |
+
Generate meeting summary prompt according to selected sections.
|
| 78 |
+
|
| 79 |
+
Args:
|
| 80 |
+
selected_sections (list): List of section keys to include
|
| 81 |
+
speaker_references (str): Diarization context with tags (optional)
|
| 82 |
+
chunk_info (str): Audio segment information (optional)
|
| 83 |
+
previous_context (str): Context from previous segments (optional)
|
| 84 |
+
|
| 85 |
+
Returns:
|
| 86 |
+
str: Formatted prompt
|
| 87 |
+
"""
|
| 88 |
+
# Diarization context
|
| 89 |
+
diarization_context = ""
|
| 90 |
+
if speaker_references and speaker_references.strip():
|
| 91 |
+
diarization_context = f"""
|
| 92 |
+
|
| 93 |
+
CONTEXT FOR YOUR ANALYSIS (do not include in your response):
|
| 94 |
+
Different speakers have been automatically identified in the audio: {speaker_references}
|
| 95 |
+
Use this information to enrich your analysis but do not display it in your final response.
|
| 96 |
+
|
| 97 |
+
"""
|
| 98 |
+
|
| 99 |
+
# Previous segments context
|
| 100 |
+
previous_summary_context = ""
|
| 101 |
+
if previous_context and previous_context.strip():
|
| 102 |
+
previous_summary_context = f"""
|
| 103 |
+
|
| 104 |
+
CONTEXT FROM PREVIOUS SEGMENTS (do not include in your response):
|
| 105 |
+
Here's what happened in previous audio segments:
|
| 106 |
+
{previous_context}
|
| 107 |
+
|
| 108 |
+
Use this information to ensure continuity and avoid repetitions, but focus on the new content of this segment.
|
| 109 |
+
|
| 110 |
+
"""
|
| 111 |
+
|
| 112 |
+
# Audio segment information
|
| 113 |
+
segment_context = ""
|
| 114 |
+
if chunk_info and chunk_info.strip():
|
| 115 |
+
segment_context = f"""
|
| 116 |
+
|
| 117 |
+
IMPORTANT: You are analyzing a segment ({chunk_info}) extracted from a longer audio recording.
|
| 118 |
+
This segment may start or end in the middle of sentences/discussions.
|
| 119 |
+
Focus on the content of this segment while keeping in mind it's part of a larger whole.
|
| 120 |
+
|
| 121 |
+
"""
|
| 122 |
+
|
| 123 |
+
# Build selected sections
|
| 124 |
+
sections_text = ""
|
| 125 |
+
for section_key in selected_sections:
|
| 126 |
+
if section_key in VoxtralPrompts.AVAILABLE_SECTIONS:
|
| 127 |
+
section = VoxtralPrompts.AVAILABLE_SECTIONS[section_key]
|
| 128 |
+
sections_text += f"\n{section['title']}\n{section['description']}\n"
|
| 129 |
+
print(f"โ
Section added: {section['title']}")
|
| 130 |
+
else:
|
| 131 |
+
print(f"โ Unknown section: {section_key}")
|
| 132 |
+
|
| 133 |
+
return f"""Listen carefully to this meeting audio segment and provide a complete structured summary.{diarization_context}{previous_summary_context}{segment_context}
|
| 134 |
+
|
| 135 |
+
CRITICAL INSTRUCTION - RESPONSE LANGUAGE:
|
| 136 |
+
- DETECT the language spoken in this audio
|
| 137 |
+
- RESPOND OBLIGATORILY in the same detected language
|
| 138 |
+
- If audio is in French โ respond in French
|
| 139 |
+
- If audio is in English โ respond in English
|
| 140 |
+
- If audio is in another language โ respond in that language
|
| 141 |
+
- NEVER use a different language than the one detected in the audio
|
| 142 |
+
|
| 143 |
+
{sections_text}
|
| 144 |
+
Format your response in markdown exactly as shown above."""
|
| 145 |
+
|
| 146 |
+
@staticmethod
|
| 147 |
+
def get_default_sections(meeting_type: str) -> list:
|
| 148 |
+
"""
|
| 149 |
+
Return default sections according to meeting type.
|
| 150 |
+
|
| 151 |
+
Args:
|
| 152 |
+
meeting_type (str): "action" or "information"
|
| 153 |
+
|
| 154 |
+
Returns:
|
| 155 |
+
list: List of default section keys
|
| 156 |
+
"""
|
| 157 |
+
if "action" in meeting_type.lower():
|
| 158 |
+
return [key for key, section in VoxtralPrompts.AVAILABLE_SECTIONS.items()
|
| 159 |
+
if section["default_action"]]
|
| 160 |
+
else:
|
| 161 |
+
return [key for key, section in VoxtralPrompts.AVAILABLE_SECTIONS.items()
|
| 162 |
+
if section["default_info"]]
|
| 163 |
+
|
| 164 |
+
@staticmethod
|
| 165 |
+
def get_synthesis_prompt(selected_sections: list, chunk_summaries: list) -> str:
|
| 166 |
+
"""
|
| 167 |
+
Generate prompt for synthesizing multiple chunk summaries.
|
| 168 |
+
|
| 169 |
+
Args:
|
| 170 |
+
selected_sections (list): List of requested section keys
|
| 171 |
+
chunk_summaries (list): List of chunk summaries to synthesize
|
| 172 |
+
|
| 173 |
+
Returns:
|
| 174 |
+
str: Formatted synthesis prompt
|
| 175 |
+
"""
|
| 176 |
+
# Build selected sections
|
| 177 |
+
sections_text = ""
|
| 178 |
+
for section_key in selected_sections:
|
| 179 |
+
if section_key in VoxtralPrompts.AVAILABLE_SECTIONS:
|
| 180 |
+
section = VoxtralPrompts.AVAILABLE_SECTIONS[section_key]
|
| 181 |
+
sections_text += f"\n{section['title']}\n{section['description']}\n"
|
| 182 |
+
|
| 183 |
+
# Assemble all chunk summaries
|
| 184 |
+
all_chunks_text = "\n\n=== SEGMENT SEPARATOR ===\n\n".join(chunk_summaries)
|
| 185 |
+
|
| 186 |
+
return f"""You will receive multiple analyses of segments from the same audio meeting.
|
| 187 |
+
Your role is to synthesize them into a coherent and structured global summary.
|
| 188 |
+
|
| 189 |
+
SEGMENT ANALYSES TO SYNTHESIZE:
|
| 190 |
+
{all_chunks_text}
|
| 191 |
+
|
| 192 |
+
CRITICAL INSTRUCTION - RESPONSE LANGUAGE:
|
| 193 |
+
- DETECT the language used in the segments above
|
| 194 |
+
- RESPOND OBLIGATORILY in the same detected language
|
| 195 |
+
- If segments are in French โ respond in French
|
| 196 |
+
- If segments are in English โ respond in English
|
| 197 |
+
- Avoid repetitions between segments
|
| 198 |
+
- Identify recurring elements and unify them
|
| 199 |
+
- Ensure temporal and logical coherence
|
| 200 |
+
- Produce a global summary that reflects the entire meeting
|
| 201 |
+
|
| 202 |
+
Generate a final structured summary according to these sections:
|
| 203 |
+
{sections_text}
|
| 204 |
+
Format your response in markdown exactly as shown above."""
|
src/ai/voxtral_spaces_analyzer.py
ADDED
|
@@ -0,0 +1,398 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
Voxtral analyzer optimized for Hugging Face Spaces.
|
| 3 |
+
|
| 4 |
+
This module provides audio analysis using Voxtral models with:
|
| 5 |
+
- Only Transformers backend (no MLX or API)
|
| 6 |
+
- Only 8-bit quantized models for memory efficiency
|
| 7 |
+
- Zero GPU decorators for HF Spaces compute allocation
|
| 8 |
+
- Optimized memory management for Spaces environment
|
| 9 |
+
"""
|
| 10 |
+
|
| 11 |
+
import torch
|
| 12 |
+
import torchaudio
|
| 13 |
+
import tempfile
|
| 14 |
+
import time
|
| 15 |
+
import gc
|
| 16 |
+
import os
|
| 17 |
+
from transformers import VoxtralForConditionalGeneration, AutoProcessor
|
| 18 |
+
from pydub import AudioSegment
|
| 19 |
+
from typing import List, Dict, Tuple, Optional
|
| 20 |
+
|
| 21 |
+
from ..utils.zero_gpu_manager import gpu_model_loading, gpu_inference, gpu_long_task, ZeroGPUManager
|
| 22 |
+
from .prompts_config import VoxtralPrompts
|
| 23 |
+
from ..utils.token_tracker import TokenTracker
|
| 24 |
+
|
| 25 |
+
|
| 26 |
+
class VoxtralSpacesAnalyzer:
|
| 27 |
+
"""
|
| 28 |
+
Voxtral analyzer optimized for Hugging Face Spaces.
|
| 29 |
+
|
| 30 |
+
Features:
|
| 31 |
+
- Only 8-bit quantized models
|
| 32 |
+
- Zero GPU decorators for efficient compute allocation
|
| 33 |
+
- Memory-optimized processing for Spaces constraints
|
| 34 |
+
"""
|
| 35 |
+
|
| 36 |
+
def __init__(self, model_name: str = "Voxtral-Mini-3B-2507"):
|
| 37 |
+
"""
|
| 38 |
+
Initialize the Voxtral analyzer for HF Spaces.
|
| 39 |
+
|
| 40 |
+
Args:
|
| 41 |
+
model_name (str): Name of the Voxtral model to use (8-bit only)
|
| 42 |
+
"""
|
| 43 |
+
# Only 8-bit models are supported in Spaces version
|
| 44 |
+
model_mapping = {
|
| 45 |
+
"Voxtral-Mini-3B-2507": "mistralai/Voxtral-Mini-3B-2507",
|
| 46 |
+
"Voxtral-Small-24B-2507": "mistralai/Voxtral-Small-24B-2507"
|
| 47 |
+
}
|
| 48 |
+
|
| 49 |
+
self.model_name = model_mapping.get(model_name, "mistralai/Voxtral-Mini-3B-2507")
|
| 50 |
+
self.max_duration_minutes = 20 # Reduced for Spaces environment
|
| 51 |
+
self.gpu_manager = ZeroGPUManager()
|
| 52 |
+
|
| 53 |
+
# Model and processor will be loaded on-demand with GPU decorators
|
| 54 |
+
self.model = None
|
| 55 |
+
self.processor = None
|
| 56 |
+
self.token_tracker = TokenTracker("Transformers-8bit")
|
| 57 |
+
|
| 58 |
+
print(f"๐ VoxtralSpacesAnalyzer initialized for model: {model_name}")
|
| 59 |
+
|
| 60 |
+
@gpu_model_loading(duration=120)
|
| 61 |
+
def _load_model_if_needed(self):
|
| 62 |
+
"""Load model and processor with GPU allocation if not already loaded."""
|
| 63 |
+
if self.model is not None and self.processor is not None:
|
| 64 |
+
return
|
| 65 |
+
|
| 66 |
+
device = self.gpu_manager.get_device()
|
| 67 |
+
dtype = self.gpu_manager.dtype
|
| 68 |
+
print(f"๐ Loading Voxtral model on {device} with {dtype}...")
|
| 69 |
+
|
| 70 |
+
# Load processor
|
| 71 |
+
self.processor = AutoProcessor.from_pretrained(self.model_name)
|
| 72 |
+
|
| 73 |
+
# Model loading strategy based on device and environment
|
| 74 |
+
if self.gpu_manager.is_spaces_environment() and device == "cuda":
|
| 75 |
+
# HF Spaces with CUDA: use 8-bit quantization
|
| 76 |
+
print("๐ฆ Loading with 8-bit quantization for HF Spaces")
|
| 77 |
+
self.model = VoxtralForConditionalGeneration.from_pretrained(
|
| 78 |
+
self.model_name,
|
| 79 |
+
load_in_8bit=True,
|
| 80 |
+
device_map="auto",
|
| 81 |
+
torch_dtype=dtype,
|
| 82 |
+
low_cpu_mem_usage=True
|
| 83 |
+
)
|
| 84 |
+
elif device == "mps":
|
| 85 |
+
# Local Mac with MPS: standard loading with MPS-compatible settings
|
| 86 |
+
print("๐ฆ Loading with MPS optimization for local Mac testing")
|
| 87 |
+
self.model = VoxtralForConditionalGeneration.from_pretrained(
|
| 88 |
+
self.model_name,
|
| 89 |
+
torch_dtype=dtype,
|
| 90 |
+
low_cpu_mem_usage=True
|
| 91 |
+
)
|
| 92 |
+
self.model = self.model.to(device)
|
| 93 |
+
elif device == "cuda":
|
| 94 |
+
# Local CUDA: can use more aggressive optimizations
|
| 95 |
+
print("๐ฆ Loading with CUDA optimization for local testing")
|
| 96 |
+
self.model = VoxtralForConditionalGeneration.from_pretrained(
|
| 97 |
+
self.model_name,
|
| 98 |
+
torch_dtype=dtype,
|
| 99 |
+
low_cpu_mem_usage=True,
|
| 100 |
+
device_map="auto"
|
| 101 |
+
)
|
| 102 |
+
else:
|
| 103 |
+
# CPU fallback
|
| 104 |
+
print("๐ฆ Loading on CPU")
|
| 105 |
+
self.model = VoxtralForConditionalGeneration.from_pretrained(
|
| 106 |
+
self.model_name,
|
| 107 |
+
torch_dtype=dtype,
|
| 108 |
+
low_cpu_mem_usage=True
|
| 109 |
+
)
|
| 110 |
+
|
| 111 |
+
print(f"โ
Model loaded successfully on {device}")
|
| 112 |
+
|
| 113 |
+
# Print memory info if available
|
| 114 |
+
if self.gpu_manager.is_gpu_available():
|
| 115 |
+
memory_info = self.gpu_manager.get_memory_info()
|
| 116 |
+
if memory_info["available"]:
|
| 117 |
+
if memory_info["device"] == "cuda":
|
| 118 |
+
allocated_gb = memory_info["allocated"] / (1024**3)
|
| 119 |
+
print(f"๐ CUDA Memory allocated: {allocated_gb:.2f}GB")
|
| 120 |
+
elif memory_info["device"] == "mps":
|
| 121 |
+
allocated_mb = memory_info["allocated"] / (1024**2)
|
| 122 |
+
print(f"๐ MPS Memory allocated: {allocated_mb:.1f}MB")
|
| 123 |
+
|
| 124 |
+
def _get_audio_duration(self, wav_path: str) -> float:
|
| 125 |
+
"""Get audio duration in minutes."""
|
| 126 |
+
audio = AudioSegment.from_file(wav_path)
|
| 127 |
+
return len(audio) / (1000 * 60)
|
| 128 |
+
|
| 129 |
+
def _create_time_chunks(self, wav_path: str) -> List[Tuple[float, float]]:
|
| 130 |
+
"""Create time-based chunks for processing."""
|
| 131 |
+
total_duration = self._get_audio_duration(wav_path) * 60 # seconds
|
| 132 |
+
max_chunk_seconds = self.max_duration_minutes * 60
|
| 133 |
+
|
| 134 |
+
if total_duration <= max_chunk_seconds:
|
| 135 |
+
return [(0, total_duration)]
|
| 136 |
+
|
| 137 |
+
chunks = []
|
| 138 |
+
current_start = 0
|
| 139 |
+
|
| 140 |
+
while current_start < total_duration:
|
| 141 |
+
chunk_end = min(current_start + max_chunk_seconds, total_duration)
|
| 142 |
+
chunks.append((current_start, chunk_end))
|
| 143 |
+
current_start = chunk_end
|
| 144 |
+
|
| 145 |
+
return chunks
|
| 146 |
+
|
| 147 |
+
def _extract_audio_chunk(self, wav_path: str, start_time: float, end_time: float) -> str:
|
| 148 |
+
"""Extract audio chunk between timestamps."""
|
| 149 |
+
audio = AudioSegment.from_file(wav_path)
|
| 150 |
+
|
| 151 |
+
start_ms = int(start_time * 1000)
|
| 152 |
+
end_ms = int(end_time * 1000)
|
| 153 |
+
|
| 154 |
+
chunk = audio[start_ms:end_ms]
|
| 155 |
+
|
| 156 |
+
with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as tmp_chunk:
|
| 157 |
+
chunk_path = tmp_chunk.name
|
| 158 |
+
|
| 159 |
+
chunk.export(chunk_path, format="wav")
|
| 160 |
+
return chunk_path
|
| 161 |
+
|
| 162 |
+
@gpu_long_task(duration=300)
|
| 163 |
+
def analyze_audio_chunks(
|
| 164 |
+
self,
|
| 165 |
+
wav_path: str,
|
| 166 |
+
language: str = "french",
|
| 167 |
+
selected_sections: list = None,
|
| 168 |
+
chunk_duration_minutes: int = 15,
|
| 169 |
+
reference_speakers_data: str = None
|
| 170 |
+
) -> Dict[str, str]:
|
| 171 |
+
"""
|
| 172 |
+
Analyze audio by chunks using Voxtral with Zero GPU.
|
| 173 |
+
|
| 174 |
+
Args:
|
| 175 |
+
wav_path (str): Path to audio file
|
| 176 |
+
language (str): Expected language
|
| 177 |
+
selected_sections (list): Analysis sections to include
|
| 178 |
+
chunk_duration_minutes (int): Chunk duration in minutes
|
| 179 |
+
reference_speakers_data (str): Speaker diarization data
|
| 180 |
+
|
| 181 |
+
Returns:
|
| 182 |
+
Dict[str, str]: Analysis results
|
| 183 |
+
"""
|
| 184 |
+
try:
|
| 185 |
+
# Ensure model is loaded
|
| 186 |
+
self._load_model_if_needed()
|
| 187 |
+
|
| 188 |
+
total_start_time = time.time()
|
| 189 |
+
duration = self._get_audio_duration(wav_path)
|
| 190 |
+
print(f"๐ต Audio duration: {duration:.1f} minutes")
|
| 191 |
+
|
| 192 |
+
# Create chunks
|
| 193 |
+
chunks = self._create_time_chunks(wav_path)
|
| 194 |
+
print(f"๐ฆ Splitting into {len(chunks)} chunks")
|
| 195 |
+
|
| 196 |
+
chunk_summaries = []
|
| 197 |
+
|
| 198 |
+
for i, (start_time, end_time) in enumerate(chunks):
|
| 199 |
+
print(f"๐ฏ Processing chunk {i+1}/{len(chunks)} ({start_time/60:.1f}-{end_time/60:.1f}min)")
|
| 200 |
+
|
| 201 |
+
chunk_start_time = time.time()
|
| 202 |
+
chunk_path = self._extract_audio_chunk(wav_path, start_time, end_time)
|
| 203 |
+
|
| 204 |
+
try:
|
| 205 |
+
# Analyze chunk with Zero GPU
|
| 206 |
+
chunk_summary = self._analyze_single_chunk(
|
| 207 |
+
chunk_path,
|
| 208 |
+
selected_sections,
|
| 209 |
+
reference_speakers_data,
|
| 210 |
+
i + 1,
|
| 211 |
+
len(chunks),
|
| 212 |
+
start_time,
|
| 213 |
+
end_time
|
| 214 |
+
)
|
| 215 |
+
|
| 216 |
+
chunk_summaries.append(f"## Segment {i+1} ({start_time/60:.1f}-{end_time/60:.1f}min)\n\n{chunk_summary}")
|
| 217 |
+
|
| 218 |
+
chunk_duration = time.time() - chunk_start_time
|
| 219 |
+
print(f"โ
Chunk {i+1} analyzed in {chunk_duration:.1f}s")
|
| 220 |
+
|
| 221 |
+
except Exception as e:
|
| 222 |
+
print(f"โ Error processing chunk {i+1}: {e}")
|
| 223 |
+
chunk_summaries.append(f"**Segment {i+1}:** Processing error")
|
| 224 |
+
finally:
|
| 225 |
+
# Clean up chunk file
|
| 226 |
+
if os.path.exists(chunk_path):
|
| 227 |
+
os.remove(chunk_path)
|
| 228 |
+
|
| 229 |
+
# GPU cleanup after each chunk
|
| 230 |
+
self.gpu_manager.cleanup_gpu()
|
| 231 |
+
|
| 232 |
+
# Final synthesis if multiple chunks
|
| 233 |
+
if len(chunk_summaries) > 1:
|
| 234 |
+
print(f"๐ Final synthesis of {len(chunk_summaries)} segments...")
|
| 235 |
+
combined_content = "\n\n".join(chunk_summaries)
|
| 236 |
+
final_analysis = self._synthesize_chunks_final(combined_content, selected_sections)
|
| 237 |
+
else:
|
| 238 |
+
final_analysis = chunk_summaries[0] if chunk_summaries else "No analysis available."
|
| 239 |
+
|
| 240 |
+
total_duration = time.time() - total_start_time
|
| 241 |
+
print(f"โฑ๏ธ Total analysis completed in {total_duration:.1f}s for {duration:.1f}min of audio")
|
| 242 |
+
|
| 243 |
+
# Print token usage
|
| 244 |
+
self.token_tracker.print_summary()
|
| 245 |
+
|
| 246 |
+
return {"transcription": final_analysis}
|
| 247 |
+
|
| 248 |
+
finally:
|
| 249 |
+
# Final GPU cleanup
|
| 250 |
+
self.gpu_manager.cleanup_gpu()
|
| 251 |
+
|
| 252 |
+
@gpu_inference(duration=120)
|
| 253 |
+
def _analyze_single_chunk(
|
| 254 |
+
self,
|
| 255 |
+
chunk_path: str,
|
| 256 |
+
selected_sections: list,
|
| 257 |
+
reference_speakers_data: str,
|
| 258 |
+
chunk_num: int,
|
| 259 |
+
total_chunks: int,
|
| 260 |
+
start_time: float,
|
| 261 |
+
end_time: float
|
| 262 |
+
) -> str:
|
| 263 |
+
"""Analyze a single audio chunk with GPU inference."""
|
| 264 |
+
# Build analysis prompt
|
| 265 |
+
sections_list = selected_sections if selected_sections else ["resume_executif"]
|
| 266 |
+
chunk_info = f"SEGMENT {chunk_num}/{total_chunks} ({start_time/60:.1f}-{end_time/60:.1f}min)" if total_chunks > 1 else None
|
| 267 |
+
|
| 268 |
+
prompt_text = VoxtralPrompts.get_meeting_summary_prompt(
|
| 269 |
+
sections_list,
|
| 270 |
+
reference_speakers_data,
|
| 271 |
+
chunk_info,
|
| 272 |
+
None
|
| 273 |
+
)
|
| 274 |
+
|
| 275 |
+
# Create conversation for audio instruct mode
|
| 276 |
+
conversation = [{
|
| 277 |
+
"role": "user",
|
| 278 |
+
"content": [
|
| 279 |
+
{"type": "audio", "path": chunk_path},
|
| 280 |
+
{"type": "text", "text": prompt_text},
|
| 281 |
+
],
|
| 282 |
+
}]
|
| 283 |
+
|
| 284 |
+
# Process with chat template
|
| 285 |
+
inputs = self.processor.apply_chat_template(conversation, return_tensors="pt")
|
| 286 |
+
device = self.gpu_manager.get_device()
|
| 287 |
+
dtype = self.gpu_manager.dtype if hasattr(self.gpu_manager, 'dtype') else torch.float16
|
| 288 |
+
|
| 289 |
+
# Move inputs to device with appropriate dtype
|
| 290 |
+
if hasattr(inputs, 'to'):
|
| 291 |
+
inputs = inputs.to(device, dtype=dtype)
|
| 292 |
+
else:
|
| 293 |
+
# Handle BatchFeature or dict-like inputs
|
| 294 |
+
inputs = {k: v.to(device, dtype=dtype) if hasattr(v, 'to') else v for k, v in inputs.items()}
|
| 295 |
+
|
| 296 |
+
# Generate with optimized settings for Spaces
|
| 297 |
+
with torch.no_grad():
|
| 298 |
+
outputs = self.model.generate(
|
| 299 |
+
**inputs,
|
| 300 |
+
max_new_tokens=8000, # Reduced for 8-bit model efficiency
|
| 301 |
+
temperature=0.2,
|
| 302 |
+
do_sample=True,
|
| 303 |
+
pad_token_id=self.processor.tokenizer.eos_token_id,
|
| 304 |
+
use_cache=True,
|
| 305 |
+
output_scores=False
|
| 306 |
+
)
|
| 307 |
+
|
| 308 |
+
# Decode response
|
| 309 |
+
input_tokens = inputs.input_ids.shape[1]
|
| 310 |
+
output_tokens_count = outputs.shape[1] - input_tokens
|
| 311 |
+
|
| 312 |
+
chunk_summary = self.processor.batch_decode(
|
| 313 |
+
outputs[:, inputs.input_ids.shape[1]:],
|
| 314 |
+
skip_special_tokens=True
|
| 315 |
+
)[0].strip()
|
| 316 |
+
|
| 317 |
+
# Track tokens
|
| 318 |
+
self.token_tracker.add_chunk_tokens(input_tokens, output_tokens_count)
|
| 319 |
+
|
| 320 |
+
return chunk_summary
|
| 321 |
+
|
| 322 |
+
@gpu_inference(duration=60)
|
| 323 |
+
def _synthesize_chunks_final(self, combined_content: str, selected_sections: list) -> str:
|
| 324 |
+
"""Final synthesis of all chunks with GPU inference."""
|
| 325 |
+
try:
|
| 326 |
+
# Build synthesis prompt
|
| 327 |
+
sections_text = ""
|
| 328 |
+
if selected_sections:
|
| 329 |
+
for section_key in selected_sections:
|
| 330 |
+
if section_key in VoxtralPrompts.AVAILABLE_SECTIONS:
|
| 331 |
+
section = VoxtralPrompts.AVAILABLE_SECTIONS[section_key]
|
| 332 |
+
sections_text += f"\n{section['title']}\n{section['description']}\n"
|
| 333 |
+
|
| 334 |
+
synthesis_prompt = f"""Here are detailed analyses from multiple meeting segments:
|
| 335 |
+
|
| 336 |
+
{combined_content}
|
| 337 |
+
|
| 338 |
+
CRITICAL INSTRUCTION - RESPONSE LANGUAGE:
|
| 339 |
+
- DETECT the language used in the segments above
|
| 340 |
+
- RESPOND OBLIGATORILY in the same detected language
|
| 341 |
+
- If segments are in French โ respond in French
|
| 342 |
+
- If segments are in English โ respond in English
|
| 343 |
+
|
| 344 |
+
Now synthesize these analyses into a coherent global summary structured according to the requested sections:{sections_text}
|
| 345 |
+
|
| 346 |
+
Provide a unified synthesis that combines and summarizes information from all segments coherently."""
|
| 347 |
+
|
| 348 |
+
# Generate synthesis
|
| 349 |
+
conversation = [{"role": "user", "content": synthesis_prompt}]
|
| 350 |
+
inputs = self.processor.apply_chat_template(conversation, return_tensors="pt")
|
| 351 |
+
device = self.gpu_manager.get_device()
|
| 352 |
+
dtype = self.gpu_manager.dtype if hasattr(self.gpu_manager, 'dtype') else torch.float16
|
| 353 |
+
|
| 354 |
+
# Move inputs to device with appropriate dtype
|
| 355 |
+
if hasattr(inputs, 'to'):
|
| 356 |
+
inputs = inputs.to(device, dtype=dtype)
|
| 357 |
+
else:
|
| 358 |
+
inputs = {k: v.to(device, dtype=dtype) if hasattr(v, 'to') else v for k, v in inputs.items()}
|
| 359 |
+
|
| 360 |
+
with torch.no_grad():
|
| 361 |
+
outputs = self.model.generate(
|
| 362 |
+
**inputs,
|
| 363 |
+
max_new_tokens=3000, # Reduced for 8-bit efficiency
|
| 364 |
+
temperature=0.1,
|
| 365 |
+
do_sample=True,
|
| 366 |
+
pad_token_id=self.processor.tokenizer.eos_token_id
|
| 367 |
+
)
|
| 368 |
+
|
| 369 |
+
# Decode synthesis
|
| 370 |
+
input_length = inputs.input_ids.shape[1]
|
| 371 |
+
output_tokens_count = outputs.shape[1] - input_length
|
| 372 |
+
|
| 373 |
+
final_synthesis = self.processor.tokenizer.decode(
|
| 374 |
+
outputs[0][input_length:],
|
| 375 |
+
skip_special_tokens=True
|
| 376 |
+
).strip()
|
| 377 |
+
|
| 378 |
+
self.token_tracker.add_synthesis_tokens(input_length, output_tokens_count)
|
| 379 |
+
|
| 380 |
+
return f"# Global Meeting Summary\n\n{final_synthesis}\n\n---\n\n## Details by Segment\n\n{combined_content}"
|
| 381 |
+
|
| 382 |
+
except Exception as e:
|
| 383 |
+
print(f"โ Error during final synthesis: {e}")
|
| 384 |
+
return f"# Meeting Summary\n\nโ ๏ธ Error during final synthesis: {str(e)}\n\n## Segment Analyses\n\n{combined_content}"
|
| 385 |
+
|
| 386 |
+
def cleanup_model(self):
|
| 387 |
+
"""Clean up model from memory."""
|
| 388 |
+
if self.model is not None:
|
| 389 |
+
self.model.to('cpu')
|
| 390 |
+
del self.model
|
| 391 |
+
self.model = None
|
| 392 |
+
|
| 393 |
+
if self.processor is not None:
|
| 394 |
+
del self.processor
|
| 395 |
+
self.processor = None
|
| 396 |
+
|
| 397 |
+
self.gpu_manager.cleanup_gpu()
|
| 398 |
+
print("๐งน Voxtral Spaces model cleaned up")
|
src/ui/__init__.py
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
"""UI components for HF Spaces version."""
|
src/ui/spaces_interface.py
ADDED
|
@@ -0,0 +1,666 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
Application Gradio pour l'analyse intelligente de rรฉunions avec Voxtral - Version HF Spaces.
|
| 3 |
+
|
| 4 |
+
Version adaptรฉe pour Hugging Face Spaces avec :
|
| 5 |
+
- Uniquement mode Transformers (MLX et API supprimรฉs)
|
| 6 |
+
- Modรจles 8-bit uniquement
|
| 7 |
+
- Support MCP natif
|
| 8 |
+
- Zero GPU decorators
|
| 9 |
+
"""
|
| 10 |
+
|
| 11 |
+
import os
|
| 12 |
+
import gradio as gr
|
| 13 |
+
from dotenv import load_dotenv
|
| 14 |
+
|
| 15 |
+
from ..ai.voxtral_spaces_analyzer import VoxtralSpacesAnalyzer
|
| 16 |
+
from ..ai.diarization import SpeakerDiarization
|
| 17 |
+
from ..utils.zero_gpu_manager import ZeroGPUManager, gpu_inference
|
| 18 |
+
|
| 19 |
+
# Import labels from main project
|
| 20 |
+
import sys
|
| 21 |
+
import os
|
| 22 |
+
sys.path.append(os.path.join(os.path.dirname(__file__), '../../../src'))
|
| 23 |
+
from meetingnotes.ui.labels import UILabels
|
| 24 |
+
|
| 25 |
+
# Charger les variables d'environnement depuis le fichier .env
|
| 26 |
+
load_dotenv()
|
| 27 |
+
|
| 28 |
+
# Global instances for MCP functions
|
| 29 |
+
analyzer = None
|
| 30 |
+
diarization = None
|
| 31 |
+
gpu_manager = None
|
| 32 |
+
current_diarization_context = None
|
| 33 |
+
|
| 34 |
+
def initialize_components():
|
| 35 |
+
"""Initialize global components for MCP functions."""
|
| 36 |
+
global analyzer, diarization, gpu_manager
|
| 37 |
+
if analyzer is None:
|
| 38 |
+
analyzer = VoxtralSpacesAnalyzer()
|
| 39 |
+
diarization = SpeakerDiarization()
|
| 40 |
+
gpu_manager = ZeroGPUManager()
|
| 41 |
+
|
| 42 |
+
# MCP Tools - exposed automatically by Gradio
|
| 43 |
+
@gpu_inference(duration=300)
|
| 44 |
+
def analyze_meeting_audio(
|
| 45 |
+
audio_file: str,
|
| 46 |
+
sections: list = None,
|
| 47 |
+
model_name: str = "Voxtral-Mini-3B-2507",
|
| 48 |
+
enable_diarization: bool = False,
|
| 49 |
+
num_speakers: int = None
|
| 50 |
+
) -> dict:
|
| 51 |
+
"""
|
| 52 |
+
Analyze meeting audio and generate structured summaries using Voxtral AI.
|
| 53 |
+
|
| 54 |
+
This function processes audio files to extract insights, identify speakers,
|
| 55 |
+
and generate structured meeting summaries with configurable sections.
|
| 56 |
+
|
| 57 |
+
Args:
|
| 58 |
+
audio_file: Path to the audio file to analyze (MP3, WAV, M4A, OGG)
|
| 59 |
+
sections: List of analysis sections to include (executive_summary, action_plan, etc.)
|
| 60 |
+
model_name: Voxtral model to use for analysis (Mini-3B or Small-24B)
|
| 61 |
+
enable_diarization: Whether to identify and separate speakers
|
| 62 |
+
num_speakers: Expected number of speakers (optional, for better diarization)
|
| 63 |
+
|
| 64 |
+
Returns:
|
| 65 |
+
Dictionary containing analysis results, processing time, and metadata
|
| 66 |
+
"""
|
| 67 |
+
initialize_components()
|
| 68 |
+
|
| 69 |
+
if not os.path.exists(audio_file):
|
| 70 |
+
return {"error": "Audio file not found", "status": "failed"}
|
| 71 |
+
|
| 72 |
+
try:
|
| 73 |
+
import time
|
| 74 |
+
start_time = time.time()
|
| 75 |
+
|
| 76 |
+
# Set default sections if none provided
|
| 77 |
+
if sections is None:
|
| 78 |
+
sections = ["resume_executif", "discussions_principales", "plan_action"]
|
| 79 |
+
|
| 80 |
+
# Speaker diarization if enabled
|
| 81 |
+
speaker_data = None
|
| 82 |
+
if enable_diarization:
|
| 83 |
+
rttm_result, reference_segments = diarization.diarize_audio(
|
| 84 |
+
audio_file, num_speakers=num_speakers
|
| 85 |
+
)
|
| 86 |
+
if not rttm_result.startswith("โ"):
|
| 87 |
+
speaker_data = rttm_result
|
| 88 |
+
|
| 89 |
+
# Set model if different
|
| 90 |
+
if analyzer.model_name != f"mistralai/{model_name}":
|
| 91 |
+
analyzer.model_name = f"mistralai/{model_name}"
|
| 92 |
+
analyzer.cleanup_model()
|
| 93 |
+
|
| 94 |
+
# Analyze audio
|
| 95 |
+
results = analyzer.analyze_audio_chunks(
|
| 96 |
+
wav_path=audio_file,
|
| 97 |
+
language="auto",
|
| 98 |
+
selected_sections=sections,
|
| 99 |
+
chunk_duration_minutes=15,
|
| 100 |
+
reference_speakers_data=speaker_data
|
| 101 |
+
)
|
| 102 |
+
|
| 103 |
+
processing_time = time.time() - start_time
|
| 104 |
+
|
| 105 |
+
return {
|
| 106 |
+
"status": "completed",
|
| 107 |
+
"analysis": results.get("transcription", "No analysis available"),
|
| 108 |
+
"processing_time_seconds": processing_time,
|
| 109 |
+
"model_used": model_name,
|
| 110 |
+
"sections_analyzed": sections,
|
| 111 |
+
"diarization_enabled": enable_diarization
|
| 112 |
+
}
|
| 113 |
+
|
| 114 |
+
except Exception as e:
|
| 115 |
+
return {
|
| 116 |
+
"status": "failed",
|
| 117 |
+
"error": str(e),
|
| 118 |
+
"processing_time_seconds": time.time() - start_time if 'start_time' in locals() else 0
|
| 119 |
+
}
|
| 120 |
+
finally:
|
| 121 |
+
if gpu_manager:
|
| 122 |
+
gpu_manager.cleanup_gpu()
|
| 123 |
+
|
| 124 |
+
def get_available_sections() -> dict:
|
| 125 |
+
"""Get available analysis sections for meeting summaries."""
|
| 126 |
+
from meetingnotes.ai.prompts_config import VoxtralPrompts
|
| 127 |
+
return {
|
| 128 |
+
"status": "success",
|
| 129 |
+
"sections": VoxtralPrompts.AVAILABLE_SECTIONS,
|
| 130 |
+
"total_sections": len(VoxtralPrompts.AVAILABLE_SECTIONS)
|
| 131 |
+
}
|
| 132 |
+
|
| 133 |
+
def get_meeting_templates() -> dict:
|
| 134 |
+
"""Get pre-configured meeting analysis templates."""
|
| 135 |
+
templates = {
|
| 136 |
+
"action_meeting": {
|
| 137 |
+
"name": "Action-Oriented Meeting",
|
| 138 |
+
"description": "For meetings focused on decisions and action items",
|
| 139 |
+
"recommended_sections": ["resume_executif", "discussions_principales", "plan_action", "decisions_prises", "prochaines_etapes"]
|
| 140 |
+
},
|
| 141 |
+
"info_meeting": {
|
| 142 |
+
"name": "Information Meeting",
|
| 143 |
+
"description": "For presentations and informational sessions",
|
| 144 |
+
"recommended_sections": ["resume_executif", "sujets_principaux", "points_importants", "questions_discussions", "elements_suivi"]
|
| 145 |
+
}
|
| 146 |
+
}
|
| 147 |
+
return {"status": "success", "templates": templates, "total_templates": len(templates)}
|
| 148 |
+
|
| 149 |
+
# Handlers adaptรฉs pour HF Spaces
|
| 150 |
+
def handle_input_mode_change(input_mode):
|
| 151 |
+
"""Gestion du changement de mode d'entrรฉe."""
|
| 152 |
+
if input_mode == UILabels.INPUT_MODE_AUDIO:
|
| 153 |
+
return gr.update(visible=True), gr.update(visible=False)
|
| 154 |
+
else:
|
| 155 |
+
return gr.update(visible=False), gr.update(visible=True)
|
| 156 |
+
|
| 157 |
+
def extract_audio_from_video(video_file, language):
|
| 158 |
+
"""Extraction audio depuis vidรฉo (placeholder pour HF Spaces)."""
|
| 159 |
+
if video_file is None:
|
| 160 |
+
return None, gr.update(visible=True), gr.update(visible=False), UILabels.INPUT_MODE_AUDIO, language
|
| 161 |
+
|
| 162 |
+
# Pour HF Spaces, on assume que le processing vidรฉo sera fait cรดtรฉ client
|
| 163 |
+
# ou qu'on accepte dรฉjร des fichiers audio
|
| 164 |
+
return video_file, gr.update(visible=True), gr.update(visible=False), UILabels.INPUT_MODE_AUDIO, language
|
| 165 |
+
|
| 166 |
+
@gpu_inference(duration=180)
|
| 167 |
+
def handle_diarization(audio_file, hf_token, num_speakers, start_trim, end_trim):
|
| 168 |
+
"""Gestion de la diarisation adaptรฉe pour HF Spaces."""
|
| 169 |
+
global current_diarization_context
|
| 170 |
+
|
| 171 |
+
initialize_components()
|
| 172 |
+
|
| 173 |
+
if audio_file is None:
|
| 174 |
+
return gr.update(choices=[], visible=False), None, gr.update(visible=False)
|
| 175 |
+
|
| 176 |
+
try:
|
| 177 |
+
# Diarisation avec les paramรจtres
|
| 178 |
+
rttm_result, reference_segments = diarization.diarize_audio(
|
| 179 |
+
audio_file, num_speakers=num_speakers
|
| 180 |
+
)
|
| 181 |
+
|
| 182 |
+
if rttm_result.startswith("โ"):
|
| 183 |
+
return gr.update(choices=[], visible=False), None, gr.update(visible=False)
|
| 184 |
+
|
| 185 |
+
# Sauvegarder le contexte pour l'analyse principale
|
| 186 |
+
current_diarization_context = rttm_result
|
| 187 |
+
|
| 188 |
+
# Crรฉer les boutons pour les locuteurs
|
| 189 |
+
speaker_choices = []
|
| 190 |
+
first_audio = None
|
| 191 |
+
|
| 192 |
+
for i, segment in enumerate(reference_segments):
|
| 193 |
+
speaker_id = segment['speaker']
|
| 194 |
+
speaker_choices.append((f"{speaker_id} ({segment['duration']:.1f}s)", speaker_id))
|
| 195 |
+
if i == 0: # Premier audio pour l'aperรงu
|
| 196 |
+
first_audio = segment['audio_path']
|
| 197 |
+
|
| 198 |
+
if speaker_choices:
|
| 199 |
+
return (
|
| 200 |
+
gr.update(choices=speaker_choices, value=speaker_choices[0][1], visible=True),
|
| 201 |
+
first_audio,
|
| 202 |
+
gr.update(visible=True)
|
| 203 |
+
)
|
| 204 |
+
else:
|
| 205 |
+
return gr.update(choices=[], visible=False), None, gr.update(visible=False)
|
| 206 |
+
|
| 207 |
+
except Exception as e:
|
| 208 |
+
print(f"Erreur diarisation: {e}")
|
| 209 |
+
return gr.update(choices=[], visible=False), None, gr.update(visible=False)
|
| 210 |
+
|
| 211 |
+
def handle_speaker_selection(selected_speaker, current_name):
|
| 212 |
+
"""Gestion de la sรฉlection de locuteur."""
|
| 213 |
+
# Trouve le fichier audio correspondant au locuteur sรฉlectionnรฉ
|
| 214 |
+
# Pour simplifier, on retourne juste un placeholder
|
| 215 |
+
return None, f"Locuteur_{selected_speaker}"
|
| 216 |
+
|
| 217 |
+
def handle_speaker_rename(new_name):
|
| 218 |
+
"""Gestion du renommage de locuteur."""
|
| 219 |
+
if new_name.strip():
|
| 220 |
+
renamed_info = f"Locuteur renommรฉ: {new_name}"
|
| 221 |
+
return gr.update(value=renamed_info, visible=True), gr.update(visible=True)
|
| 222 |
+
return gr.update(visible=False), gr.update(visible=False)
|
| 223 |
+
|
| 224 |
+
@gpu_inference(duration=300)
|
| 225 |
+
def handle_direct_transcription(
|
| 226 |
+
audio_file, hf_token, language, transcription_mode, model_key,
|
| 227 |
+
selected_sections, diarization_data, start_trim, end_trim, chunk_duration
|
| 228 |
+
):
|
| 229 |
+
"""Gestion de l'analyse directe adaptรฉe pour HF Spaces."""
|
| 230 |
+
initialize_components()
|
| 231 |
+
|
| 232 |
+
if audio_file is None:
|
| 233 |
+
return "", "โ Veuillez d'abord tรฉlรฉcharger un fichier audio."
|
| 234 |
+
|
| 235 |
+
try:
|
| 236 |
+
# Extraire le nom du modรจle depuis transcription_mode
|
| 237 |
+
if "Mini" in transcription_mode:
|
| 238 |
+
model_name = "Voxtral-Mini-3B-2507"
|
| 239 |
+
else:
|
| 240 |
+
model_name = "Voxtral-Small-24B-2507"
|
| 241 |
+
|
| 242 |
+
# Configurer l'analyseur
|
| 243 |
+
if analyzer.model_name != f"mistralai/{model_name}":
|
| 244 |
+
analyzer.model_name = f"mistralai/{model_name}"
|
| 245 |
+
analyzer.cleanup_model()
|
| 246 |
+
|
| 247 |
+
# Lancer l'analyse
|
| 248 |
+
results = analyzer.analyze_audio_chunks(
|
| 249 |
+
wav_path=audio_file,
|
| 250 |
+
language="auto",
|
| 251 |
+
selected_sections=selected_sections,
|
| 252 |
+
chunk_duration_minutes=int(chunk_duration),
|
| 253 |
+
reference_speakers_data=diarization_data
|
| 254 |
+
)
|
| 255 |
+
|
| 256 |
+
return "", results.get("transcription", "Aucune analyse disponible")
|
| 257 |
+
|
| 258 |
+
except Exception as e:
|
| 259 |
+
error_msg = f"โ Erreur lors de l'analyse: {str(e)}"
|
| 260 |
+
return "", error_msg
|
| 261 |
+
finally:
|
| 262 |
+
if gpu_manager:
|
| 263 |
+
gpu_manager.cleanup_gpu()
|
| 264 |
+
|
| 265 |
+
def create_spaces_interface():
|
| 266 |
+
"""
|
| 267 |
+
Point d'entrรฉe principal pour l'interface HF Spaces.
|
| 268 |
+
|
| 269 |
+
Interface identique au projet original mais simplifiรฉe :
|
| 270 |
+
- Seul mode Transformers (pas MLX/API)
|
| 271 |
+
- Modรจles 8-bit uniquement
|
| 272 |
+
- Support MCP natif
|
| 273 |
+
"""
|
| 274 |
+
# Initialize components
|
| 275 |
+
initialize_components()
|
| 276 |
+
|
| 277 |
+
# Rรฉcupรฉrer le token Hugging Face depuis les variables d'environnement
|
| 278 |
+
hf_token = os.environ.get("HF_TOKEN") or os.environ.get("HUGGINGFACE_TOKEN")
|
| 279 |
+
if hf_token is None:
|
| 280 |
+
print("โ ๏ธ Warning: HF_TOKEN environment variable not found")
|
| 281 |
+
|
| 282 |
+
# Configuration du thรจme Glass personnalisรฉ (identique ร l'original)
|
| 283 |
+
custom_glass_theme = gr.themes.Glass(
|
| 284 |
+
primary_hue=gr.themes.colors.blue,
|
| 285 |
+
secondary_hue=gr.themes.colors.gray,
|
| 286 |
+
text_size=gr.themes.sizes.text_md,
|
| 287 |
+
spacing_size=gr.themes.sizes.spacing_md,
|
| 288 |
+
radius_size=gr.themes.sizes.radius_md
|
| 289 |
+
)
|
| 290 |
+
|
| 291 |
+
with gr.Blocks(
|
| 292 |
+
theme=custom_glass_theme,
|
| 293 |
+
title="MeetingNotes - AI Analysis with Voxtral",
|
| 294 |
+
css="""
|
| 295 |
+
.gradio-container {
|
| 296 |
+
max-width: 1200px !important;
|
| 297 |
+
margin: 0 auto !important;
|
| 298 |
+
}
|
| 299 |
+
.main-header {
|
| 300 |
+
text-align: center;
|
| 301 |
+
margin-bottom: 30px;
|
| 302 |
+
padding: 20px;
|
| 303 |
+
background: linear-gradient(135deg, #667eea 0%, #764ba2 100%);
|
| 304 |
+
border-radius: 15px;
|
| 305 |
+
color: white;
|
| 306 |
+
box-shadow: 0 8px 32px rgba(31, 38, 135, 0.37);
|
| 307 |
+
}
|
| 308 |
+
.processing-section {
|
| 309 |
+
background: rgba(255, 255, 255, 0.1);
|
| 310 |
+
border-radius: 10px;
|
| 311 |
+
padding: 20px;
|
| 312 |
+
margin: 15px 0;
|
| 313 |
+
border: 1px solid rgba(255, 255, 255, 0.2);
|
| 314 |
+
backdrop-filter: blur(10px);
|
| 315 |
+
}
|
| 316 |
+
.results-section {
|
| 317 |
+
margin-top: 25px;
|
| 318 |
+
}
|
| 319 |
+
"""
|
| 320 |
+
) as demo:
|
| 321 |
+
# Main header with style (identique ร l'original)
|
| 322 |
+
with gr.Column(elem_classes="main-header"):
|
| 323 |
+
gr.Markdown(
|
| 324 |
+
f"""
|
| 325 |
+
# {UILabels.MAIN_TITLE}
|
| 326 |
+
{UILabels.MAIN_SUBTITLE}
|
| 327 |
+
{UILabels.MAIN_DESCRIPTION}
|
| 328 |
+
""",
|
| 329 |
+
elem_classes="header-content"
|
| 330 |
+
)
|
| 331 |
+
|
| 332 |
+
# Processing mode section (SIMPLIFIร - seulement Transformers 8-bit)
|
| 333 |
+
with gr.Column(elem_classes="processing-section"):
|
| 334 |
+
gr.Markdown("## ๐ง Processing Configuration")
|
| 335 |
+
gr.Markdown("*HF Spaces version - Transformers backend with 8-bit quantization*")
|
| 336 |
+
|
| 337 |
+
# Model selection (seulement les modรจles 8-bit)
|
| 338 |
+
with gr.Row():
|
| 339 |
+
with gr.Column():
|
| 340 |
+
local_model_choice = gr.Radio(
|
| 341 |
+
choices=[UILabels.MODEL_MINI, UILabels.MODEL_SMALL],
|
| 342 |
+
value=UILabels.MODEL_MINI,
|
| 343 |
+
label="Model Selection"
|
| 344 |
+
)
|
| 345 |
+
|
| 346 |
+
with gr.Column():
|
| 347 |
+
local_precision_choice = gr.Radio(
|
| 348 |
+
choices=[UILabels.PRECISION_8BIT],
|
| 349 |
+
value=UILabels.PRECISION_8BIT,
|
| 350 |
+
label="Precision (Fixed for HF Spaces)"
|
| 351 |
+
)
|
| 352 |
+
|
| 353 |
+
# Input mode selection (identique ร l'original)
|
| 354 |
+
with gr.Column(elem_classes="processing-section"):
|
| 355 |
+
gr.Markdown(UILabels.INPUT_MODE_TITLE)
|
| 356 |
+
|
| 357 |
+
input_mode = gr.Radio(
|
| 358 |
+
choices=[UILabels.INPUT_MODE_AUDIO, UILabels.INPUT_MODE_VIDEO],
|
| 359 |
+
value=UILabels.INPUT_MODE_AUDIO,
|
| 360 |
+
label=UILabels.INPUT_MODE_LABEL
|
| 361 |
+
)
|
| 362 |
+
|
| 363 |
+
# Section Audio (mode par dรฉfaut) - identique ร l'original
|
| 364 |
+
with gr.Column(elem_classes="processing-section") as audio_section:
|
| 365 |
+
gr.Markdown(UILabels.AUDIO_MODE_TITLE)
|
| 366 |
+
|
| 367 |
+
audio_input = gr.Audio(
|
| 368 |
+
label=UILabels.AUDIO_INPUT_LABEL,
|
| 369 |
+
type="filepath",
|
| 370 |
+
show_label=True,
|
| 371 |
+
interactive=True
|
| 372 |
+
)
|
| 373 |
+
|
| 374 |
+
# Section Vidรฉo (cachรฉe par dรฉfaut) - identique ร l'original
|
| 375 |
+
with gr.Column(elem_classes="processing-section", visible=False) as video_section:
|
| 376 |
+
gr.Markdown(UILabels.VIDEO_MODE_TITLE)
|
| 377 |
+
|
| 378 |
+
video_input = gr.File(
|
| 379 |
+
label=UILabels.VIDEO_INPUT_LABEL,
|
| 380 |
+
file_types=["video"]
|
| 381 |
+
)
|
| 382 |
+
|
| 383 |
+
btn_extract_audio = gr.Button(
|
| 384 |
+
UILabels.EXTRACT_AUDIO_BUTTON,
|
| 385 |
+
variant="secondary",
|
| 386 |
+
size="lg"
|
| 387 |
+
)
|
| 388 |
+
|
| 389 |
+
# Section options de trim (identique ร l'original)
|
| 390 |
+
with gr.Column(elem_classes="processing-section"):
|
| 391 |
+
with gr.Accordion(UILabels.TRIM_OPTIONS_TITLE, open=False):
|
| 392 |
+
with gr.Row():
|
| 393 |
+
start_trim_input = gr.Number(
|
| 394 |
+
label=UILabels.START_TRIM_LABEL,
|
| 395 |
+
value=0,
|
| 396 |
+
minimum=0,
|
| 397 |
+
maximum=3600
|
| 398 |
+
)
|
| 399 |
+
end_trim_input = gr.Number(
|
| 400 |
+
label=UILabels.END_TRIM_LABEL,
|
| 401 |
+
value=0,
|
| 402 |
+
minimum=0,
|
| 403 |
+
maximum=3600
|
| 404 |
+
)
|
| 405 |
+
|
| 406 |
+
# Section diarisation (identique ร l'original)
|
| 407 |
+
with gr.Column(elem_classes="processing-section"):
|
| 408 |
+
with gr.Accordion(UILabels.DIARIZATION_TITLE, open=False):
|
| 409 |
+
gr.Markdown(UILabels.DIARIZATION_DESCRIPTION)
|
| 410 |
+
|
| 411 |
+
with gr.Row():
|
| 412 |
+
num_speakers_input = gr.Number(
|
| 413 |
+
label=UILabels.NUM_SPEAKERS_LABEL,
|
| 414 |
+
value=None,
|
| 415 |
+
minimum=1,
|
| 416 |
+
maximum=10,
|
| 417 |
+
placeholder=UILabels.NUM_SPEAKERS_PLACEHOLDER
|
| 418 |
+
)
|
| 419 |
+
|
| 420 |
+
btn_diarize = gr.Button(
|
| 421 |
+
UILabels.DIARIZE_BUTTON,
|
| 422 |
+
variant="secondary",
|
| 423 |
+
size="lg"
|
| 424 |
+
)
|
| 425 |
+
|
| 426 |
+
# Section segments de rรฉfรฉrence
|
| 427 |
+
gr.Markdown(UILabels.REFERENCE_SEGMENTS_TITLE)
|
| 428 |
+
gr.Markdown(UILabels.REFERENCE_SEGMENTS_DESCRIPTION)
|
| 429 |
+
|
| 430 |
+
speaker_buttons = gr.Radio(
|
| 431 |
+
label=UILabels.SPEAKERS_DETECTED_LABEL,
|
| 432 |
+
choices=[],
|
| 433 |
+
visible=False
|
| 434 |
+
)
|
| 435 |
+
|
| 436 |
+
reference_audio_player = gr.Audio(
|
| 437 |
+
label=UILabels.REFERENCE_AUDIO_LABEL,
|
| 438 |
+
type="filepath",
|
| 439 |
+
interactive=False,
|
| 440 |
+
visible=True
|
| 441 |
+
)
|
| 442 |
+
|
| 443 |
+
# Section renommage des locuteurs
|
| 444 |
+
with gr.Column(visible=False) as rename_section:
|
| 445 |
+
gr.Markdown(UILabels.SPEAKER_RENAME_TITLE)
|
| 446 |
+
|
| 447 |
+
with gr.Row():
|
| 448 |
+
speaker_name_input = gr.Textbox(
|
| 449 |
+
label=UILabels.SPEAKER_NAME_LABEL,
|
| 450 |
+
placeholder=UILabels.SPEAKER_NAME_PLACEHOLDER
|
| 451 |
+
)
|
| 452 |
+
|
| 453 |
+
btn_apply_rename = gr.Button(
|
| 454 |
+
UILabels.APPLY_RENAME_BUTTON,
|
| 455 |
+
variant="primary",
|
| 456 |
+
size="sm"
|
| 457 |
+
)
|
| 458 |
+
|
| 459 |
+
renamed_speakers_output = gr.Textbox(
|
| 460 |
+
label=UILabels.IDENTIFIED_SPEAKERS_LABEL,
|
| 461 |
+
value="",
|
| 462 |
+
lines=5,
|
| 463 |
+
interactive=False,
|
| 464 |
+
visible=False
|
| 465 |
+
)
|
| 466 |
+
|
| 467 |
+
# Section d'analyse principale (identique ร l'original)
|
| 468 |
+
with gr.Column(elem_classes="processing-section"):
|
| 469 |
+
gr.Markdown(UILabels.MAIN_ANALYSIS_TITLE)
|
| 470 |
+
gr.Markdown(UILabels.MAIN_ANALYSIS_DESCRIPTION)
|
| 471 |
+
|
| 472 |
+
# Contrรดle taille des chunks
|
| 473 |
+
chunk_duration_slider = gr.Slider(
|
| 474 |
+
minimum=5,
|
| 475 |
+
maximum=25,
|
| 476 |
+
value=15,
|
| 477 |
+
step=5,
|
| 478 |
+
label=UILabels.CHUNK_DURATION_LABEL
|
| 479 |
+
)
|
| 480 |
+
|
| 481 |
+
# Configuration des sections de rรฉsumรฉ
|
| 482 |
+
gr.Markdown(UILabels.SUMMARY_SECTIONS_TITLE)
|
| 483 |
+
gr.Markdown(UILabels.SUMMARY_SECTIONS_DESCRIPTION)
|
| 484 |
+
|
| 485 |
+
# Boutons de prรฉsรฉlection rapide
|
| 486 |
+
with gr.Row():
|
| 487 |
+
btn_preset_action = gr.Button(UILabels.PRESET_ACTION_BUTTON, variant="secondary", size="sm")
|
| 488 |
+
btn_preset_info = gr.Button(UILabels.PRESET_INFO_BUTTON, variant="secondary", size="sm")
|
| 489 |
+
btn_preset_complet = gr.Button(UILabels.PRESET_COMPLETE_BUTTON, variant="secondary", size="sm")
|
| 490 |
+
|
| 491 |
+
with gr.Row():
|
| 492 |
+
with gr.Column():
|
| 493 |
+
gr.Markdown(UILabels.ACTION_SECTIONS_TITLE)
|
| 494 |
+
section_resume_executif = gr.Checkbox(label=UILabels.SECTION_EXECUTIVE_SUMMARY, value=True)
|
| 495 |
+
section_discussions = gr.Checkbox(label=UILabels.SECTION_MAIN_DISCUSSIONS, value=True)
|
| 496 |
+
section_plan_action = gr.Checkbox(label=UILabels.SECTION_ACTION_PLAN, value=True)
|
| 497 |
+
section_decisions = gr.Checkbox(label=UILabels.SECTION_DECISIONS, value=True)
|
| 498 |
+
section_prochaines_etapes = gr.Checkbox(label=UILabels.SECTION_NEXT_STEPS, value=True)
|
| 499 |
+
|
| 500 |
+
with gr.Column():
|
| 501 |
+
gr.Markdown(UILabels.INFO_SECTIONS_TITLE)
|
| 502 |
+
section_sujets_principaux = gr.Checkbox(label=UILabels.SECTION_MAIN_TOPICS, value=False)
|
| 503 |
+
section_points_importants = gr.Checkbox(label=UILabels.SECTION_KEY_POINTS, value=False)
|
| 504 |
+
section_questions = gr.Checkbox(label=UILabels.SECTION_QUESTIONS, value=False)
|
| 505 |
+
section_elements_suivi = gr.Checkbox(label=UILabels.SECTION_FOLLOW_UP, value=False)
|
| 506 |
+
|
| 507 |
+
btn_direct_transcribe = gr.Button(
|
| 508 |
+
UILabels.ANALYZE_BUTTON,
|
| 509 |
+
variant="primary",
|
| 510 |
+
size="lg"
|
| 511 |
+
)
|
| 512 |
+
|
| 513 |
+
# Section rรฉsultats (identique ร l'original)
|
| 514 |
+
with gr.Column(elem_classes="results-section"):
|
| 515 |
+
gr.Markdown(UILabels.RESULTS_TITLE)
|
| 516 |
+
|
| 517 |
+
final_summary_output = gr.Markdown(
|
| 518 |
+
value=UILabels.RESULTS_PLACEHOLDER,
|
| 519 |
+
label=UILabels.RESULTS_LABEL,
|
| 520 |
+
height=500
|
| 521 |
+
)
|
| 522 |
+
|
| 523 |
+
# Event handlers (adaptรฉs pour HF Spaces)
|
| 524 |
+
|
| 525 |
+
# Gestion du changement de mode d'entrรฉe
|
| 526 |
+
input_mode.change(
|
| 527 |
+
fn=handle_input_mode_change,
|
| 528 |
+
inputs=[input_mode],
|
| 529 |
+
outputs=[audio_section, video_section]
|
| 530 |
+
)
|
| 531 |
+
|
| 532 |
+
# Extraction audio depuis vidรฉo
|
| 533 |
+
btn_extract_audio.click(
|
| 534 |
+
fn=extract_audio_from_video,
|
| 535 |
+
inputs=[video_input, gr.State("french")],
|
| 536 |
+
outputs=[audio_input, audio_section, video_section, input_mode, gr.State("french")]
|
| 537 |
+
)
|
| 538 |
+
|
| 539 |
+
# Fonctions de prรฉsรฉlection des sections (identiques ร l'original)
|
| 540 |
+
def preset_action():
|
| 541 |
+
return (True, True, True, True, True, False, False, False, False)
|
| 542 |
+
|
| 543 |
+
def preset_info():
|
| 544 |
+
return (True, False, False, False, False, True, True, True, True)
|
| 545 |
+
|
| 546 |
+
def preset_complet():
|
| 547 |
+
return (True, True, True, True, True, True, True, True, True)
|
| 548 |
+
|
| 549 |
+
# Gestion de l'analyse directe (adaptรฉe pour Transformers uniquement)
|
| 550 |
+
def handle_analysis_direct(
|
| 551 |
+
audio_file, hf_token, language, local_model, local_precision, start_trim, end_trim, chunk_duration,
|
| 552 |
+
s_resume, s_discussions, s_plan_action, s_decisions, s_prochaines_etapes,
|
| 553 |
+
s_sujets_principaux, s_points_importants, s_questions, s_elements_suivi
|
| 554 |
+
):
|
| 555 |
+
# Mode Transformers uniquement
|
| 556 |
+
transcription_mode = f"Transformers ({local_model} ({local_precision}))"
|
| 557 |
+
model_key = local_model
|
| 558 |
+
|
| 559 |
+
# Construire la liste des sections sรฉlectionnรฉes
|
| 560 |
+
sections_checkboxes = [
|
| 561 |
+
(s_resume, "resume_executif"),
|
| 562 |
+
(s_discussions, "discussions_principales"),
|
| 563 |
+
(s_plan_action, "plan_action"),
|
| 564 |
+
(s_decisions, "decisions_prises"),
|
| 565 |
+
(s_prochaines_etapes, "prochaines_etapes"),
|
| 566 |
+
(s_sujets_principaux, "sujets_principaux"),
|
| 567 |
+
(s_points_importants, "points_importants"),
|
| 568 |
+
(s_questions, "questions_discussions"),
|
| 569 |
+
(s_elements_suivi, "elements_suivi")
|
| 570 |
+
]
|
| 571 |
+
|
| 572 |
+
selected_sections = [section_key for is_selected, section_key in sections_checkboxes if is_selected]
|
| 573 |
+
|
| 574 |
+
# Appeler la fonction d'analyse directe
|
| 575 |
+
_, summary = handle_direct_transcription(
|
| 576 |
+
audio_file, hf_token, language, transcription_mode,
|
| 577 |
+
model_key, selected_sections, current_diarization_context, start_trim, end_trim, chunk_duration
|
| 578 |
+
)
|
| 579 |
+
return summary
|
| 580 |
+
|
| 581 |
+
# รvรฉnements de prรฉsรฉlection (identiques ร l'original)
|
| 582 |
+
btn_preset_action.click(
|
| 583 |
+
fn=preset_action,
|
| 584 |
+
outputs=[
|
| 585 |
+
section_resume_executif, section_discussions, section_plan_action,
|
| 586 |
+
section_decisions, section_prochaines_etapes, section_sujets_principaux,
|
| 587 |
+
section_points_importants, section_questions, section_elements_suivi
|
| 588 |
+
]
|
| 589 |
+
)
|
| 590 |
+
|
| 591 |
+
btn_preset_info.click(
|
| 592 |
+
fn=preset_info,
|
| 593 |
+
outputs=[
|
| 594 |
+
section_resume_executif, section_discussions, section_plan_action,
|
| 595 |
+
section_decisions, section_prochaines_etapes, section_sujets_principaux,
|
| 596 |
+
section_points_importants, section_questions, section_elements_suivi
|
| 597 |
+
]
|
| 598 |
+
)
|
| 599 |
+
|
| 600 |
+
btn_preset_complet.click(
|
| 601 |
+
fn=preset_complet,
|
| 602 |
+
outputs=[
|
| 603 |
+
section_resume_executif, section_discussions, section_plan_action,
|
| 604 |
+
section_decisions, section_prochaines_etapes, section_sujets_principaux,
|
| 605 |
+
section_points_importants, section_questions, section_elements_suivi
|
| 606 |
+
]
|
| 607 |
+
)
|
| 608 |
+
|
| 609 |
+
# Analyse principale (adaptรฉe pour HF Spaces)
|
| 610 |
+
btn_direct_transcribe.click(
|
| 611 |
+
fn=handle_analysis_direct,
|
| 612 |
+
inputs=[
|
| 613 |
+
audio_input,
|
| 614 |
+
gr.State(value=hf_token),
|
| 615 |
+
gr.State("french"),
|
| 616 |
+
local_model_choice,
|
| 617 |
+
local_precision_choice,
|
| 618 |
+
start_trim_input,
|
| 619 |
+
end_trim_input,
|
| 620 |
+
chunk_duration_slider,
|
| 621 |
+
section_resume_executif,
|
| 622 |
+
section_discussions,
|
| 623 |
+
section_plan_action,
|
| 624 |
+
section_decisions,
|
| 625 |
+
section_prochaines_etapes,
|
| 626 |
+
section_sujets_principaux,
|
| 627 |
+
section_points_importants,
|
| 628 |
+
section_questions,
|
| 629 |
+
section_elements_suivi
|
| 630 |
+
],
|
| 631 |
+
outputs=[final_summary_output]
|
| 632 |
+
)
|
| 633 |
+
|
| 634 |
+
# Gestion de la diarisation (adaptรฉe pour HF Spaces)
|
| 635 |
+
btn_diarize.click(
|
| 636 |
+
fn=handle_diarization,
|
| 637 |
+
inputs=[audio_input, gr.State(value=hf_token), num_speakers_input, start_trim_input, end_trim_input],
|
| 638 |
+
outputs=[speaker_buttons, reference_audio_player, rename_section]
|
| 639 |
+
)
|
| 640 |
+
|
| 641 |
+
# Gestion de la sรฉlection de locuteur
|
| 642 |
+
speaker_buttons.change(
|
| 643 |
+
fn=handle_speaker_selection,
|
| 644 |
+
inputs=[speaker_buttons, speaker_name_input],
|
| 645 |
+
outputs=[reference_audio_player, speaker_name_input]
|
| 646 |
+
)
|
| 647 |
+
|
| 648 |
+
# Gestion du renommage
|
| 649 |
+
btn_apply_rename.click(
|
| 650 |
+
fn=handle_speaker_rename,
|
| 651 |
+
inputs=[speaker_name_input],
|
| 652 |
+
outputs=[renamed_speakers_output, renamed_speakers_output]
|
| 653 |
+
)
|
| 654 |
+
|
| 655 |
+
# Footer (identique ร l'original)
|
| 656 |
+
with gr.Row():
|
| 657 |
+
gr.Markdown(
|
| 658 |
+
"""
|
| 659 |
+
---
|
| 660 |
+
**MeetingNotes** | Powered by [Voxtral](https://mistral.ai/) |
|
| 661 |
+
๐ Intelligent meeting analysis | ๐พ HF Spaces with Zero GPU
|
| 662 |
+
""",
|
| 663 |
+
elem_classes="footer-info"
|
| 664 |
+
)
|
| 665 |
+
|
| 666 |
+
return demo
|
src/utils/__init__.py
ADDED
|
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""Utilities for HF Spaces version."""
|
| 2 |
+
|
| 3 |
+
from .zero_gpu_manager import ZeroGPUManager, gpu_inference, gpu_model_loading, gpu_long_task
|
| 4 |
+
from .token_tracker import TokenTracker
|
| 5 |
+
|
| 6 |
+
__all__ = ['ZeroGPUManager', 'gpu_inference', 'gpu_model_loading', 'gpu_long_task', 'TokenTracker']
|
src/utils/token_tracker.py
ADDED
|
@@ -0,0 +1,64 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
Token usage tracking utility for MeetingNotes HF Spaces.
|
| 3 |
+
|
| 4 |
+
This module provides a centralized way to track and report token consumption
|
| 5 |
+
for Transformers-based processing in HF Spaces environment.
|
| 6 |
+
"""
|
| 7 |
+
|
| 8 |
+
|
| 9 |
+
class TokenTracker:
|
| 10 |
+
"""
|
| 11 |
+
Centralized token usage tracking for HF Spaces.
|
| 12 |
+
|
| 13 |
+
Tracks input and output tokens across different chunks and processing modes
|
| 14 |
+
to provide comprehensive usage statistics.
|
| 15 |
+
"""
|
| 16 |
+
|
| 17 |
+
def __init__(self, mode: str = "Transformers-8bit"):
|
| 18 |
+
self.mode = mode
|
| 19 |
+
self.reset()
|
| 20 |
+
|
| 21 |
+
def reset(self):
|
| 22 |
+
"""Reset all counters."""
|
| 23 |
+
self.chunks_processed = 0
|
| 24 |
+
self.total_input_tokens = 0
|
| 25 |
+
self.total_output_tokens = 0
|
| 26 |
+
self.synthesis_input_tokens = 0
|
| 27 |
+
self.synthesis_output_tokens = 0
|
| 28 |
+
|
| 29 |
+
def set_mode(self, mode: str):
|
| 30 |
+
"""Set the processing mode for reporting."""
|
| 31 |
+
self.mode = mode
|
| 32 |
+
|
| 33 |
+
def add_chunk_tokens(self, input_tokens: int, output_tokens: int):
|
| 34 |
+
"""Add tokens from a chunk processing."""
|
| 35 |
+
self.chunks_processed += 1
|
| 36 |
+
self.total_input_tokens += input_tokens
|
| 37 |
+
self.total_output_tokens += output_tokens
|
| 38 |
+
|
| 39 |
+
print(f"๐ Stats {self.mode} Chunk {self.chunks_processed} - Input: {input_tokens} tokens, Output: {output_tokens} tokens")
|
| 40 |
+
|
| 41 |
+
def add_synthesis_tokens(self, input_tokens: int, output_tokens: int):
|
| 42 |
+
"""Add tokens from synthesis processing."""
|
| 43 |
+
self.synthesis_input_tokens = input_tokens
|
| 44 |
+
self.synthesis_output_tokens = output_tokens
|
| 45 |
+
|
| 46 |
+
print(f"๐ Stats {self.mode} Synthesis - Input: {input_tokens} tokens, Output: {output_tokens} tokens")
|
| 47 |
+
|
| 48 |
+
def print_summary(self):
|
| 49 |
+
"""Print final token usage summary."""
|
| 50 |
+
total_input = self.total_input_tokens + self.synthesis_input_tokens
|
| 51 |
+
total_output = self.total_output_tokens + self.synthesis_output_tokens
|
| 52 |
+
grand_total = total_input + total_output
|
| 53 |
+
|
| 54 |
+
print(f"\n๐ === TOKEN USAGE SUMMARY ({self.mode}) ===")
|
| 55 |
+
print(f"๐ฆ Chunks processed: {self.chunks_processed}")
|
| 56 |
+
print(f"๐ฅ Total input tokens: {total_input:,}")
|
| 57 |
+
print(f"๐ค Total output tokens: {total_output:,}")
|
| 58 |
+
print(f"๐ข Grand total: {grand_total:,} tokens")
|
| 59 |
+
|
| 60 |
+
if self.synthesis_input_tokens > 0:
|
| 61 |
+
print(f" โข Chunk analysis: {self.total_input_tokens + self.total_output_tokens:,} tokens")
|
| 62 |
+
print(f" โข Final synthesis: {self.synthesis_input_tokens + self.synthesis_output_tokens:,} tokens")
|
| 63 |
+
|
| 64 |
+
print("=" * 50)
|
src/utils/zero_gpu_manager.py
ADDED
|
@@ -0,0 +1,115 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
Zero GPU management for Hugging Face Spaces.
|
| 3 |
+
|
| 4 |
+
This module provides decorators and utilities for efficient GPU usage
|
| 5 |
+
in HF Spaces environment with automatic resource management.
|
| 6 |
+
"""
|
| 7 |
+
|
| 8 |
+
import functools
|
| 9 |
+
import gc
|
| 10 |
+
import os
|
| 11 |
+
import torch
|
| 12 |
+
from typing import Callable, Any
|
| 13 |
+
|
| 14 |
+
# Import spaces if available (HF Spaces environment)
|
| 15 |
+
try:
|
| 16 |
+
import spaces
|
| 17 |
+
except ImportError:
|
| 18 |
+
spaces = None
|
| 19 |
+
|
| 20 |
+
|
| 21 |
+
class ZeroGPUManager:
|
| 22 |
+
"""Manager for Zero GPU operations in HF Spaces."""
|
| 23 |
+
|
| 24 |
+
def __init__(self):
|
| 25 |
+
# Device selection with MPS support for local Mac testing
|
| 26 |
+
if torch.backends.mps.is_available():
|
| 27 |
+
self.device = "mps"
|
| 28 |
+
self.dtype = torch.float16 # MPS works better with float16
|
| 29 |
+
print("๐ Using MPS (Apple Silicon) for local testing")
|
| 30 |
+
elif torch.cuda.is_available():
|
| 31 |
+
self.device = "cuda"
|
| 32 |
+
self.dtype = torch.bfloat16 # CUDA supports bfloat16
|
| 33 |
+
print("๐ Using CUDA GPU")
|
| 34 |
+
else:
|
| 35 |
+
self.device = "cpu"
|
| 36 |
+
self.dtype = torch.float16 # CPU with float16 to save memory
|
| 37 |
+
print("โ ๏ธ Using CPU")
|
| 38 |
+
|
| 39 |
+
self.is_spaces = os.getenv("SPACE_ID") is not None
|
| 40 |
+
|
| 41 |
+
@staticmethod
|
| 42 |
+
def gpu_task(duration: int = 60):
|
| 43 |
+
"""
|
| 44 |
+
Decorator for GPU-intensive tasks.
|
| 45 |
+
|
| 46 |
+
Args:
|
| 47 |
+
duration: Expected duration in seconds for GPU allocation
|
| 48 |
+
"""
|
| 49 |
+
def decorator(func: Callable) -> Callable:
|
| 50 |
+
if spaces is not None and hasattr(spaces, 'GPU'):
|
| 51 |
+
# Use HF Spaces GPU decorator
|
| 52 |
+
return spaces.GPU(duration=duration)(func)
|
| 53 |
+
else:
|
| 54 |
+
# Fallback for local development
|
| 55 |
+
return func
|
| 56 |
+
return decorator
|
| 57 |
+
|
| 58 |
+
@staticmethod
|
| 59 |
+
def cleanup_gpu():
|
| 60 |
+
"""Clean up GPU memory after processing (CUDA/MPS/CPU)."""
|
| 61 |
+
if torch.backends.mps.is_available():
|
| 62 |
+
torch.mps.empty_cache()
|
| 63 |
+
elif torch.cuda.is_available():
|
| 64 |
+
torch.cuda.empty_cache()
|
| 65 |
+
gc.collect()
|
| 66 |
+
|
| 67 |
+
def get_device(self) -> str:
|
| 68 |
+
"""Get the appropriate device for processing."""
|
| 69 |
+
return self.device
|
| 70 |
+
|
| 71 |
+
def is_gpu_available(self) -> bool:
|
| 72 |
+
"""Check if GPU (CUDA or MPS) is available."""
|
| 73 |
+
return torch.cuda.is_available() or torch.backends.mps.is_available()
|
| 74 |
+
|
| 75 |
+
def is_spaces_environment(self) -> bool:
|
| 76 |
+
"""Check if running in HF Spaces environment."""
|
| 77 |
+
return self.is_spaces
|
| 78 |
+
|
| 79 |
+
def get_memory_info(self) -> dict:
|
| 80 |
+
"""Get current GPU memory information (CUDA or MPS)."""
|
| 81 |
+
if torch.cuda.is_available():
|
| 82 |
+
return {
|
| 83 |
+
"available": True,
|
| 84 |
+
"device": "cuda",
|
| 85 |
+
"allocated": torch.cuda.memory_allocated(),
|
| 86 |
+
"cached": torch.cuda.memory_reserved(),
|
| 87 |
+
"total": torch.cuda.get_device_properties(0).total_memory
|
| 88 |
+
}
|
| 89 |
+
elif torch.backends.mps.is_available():
|
| 90 |
+
return {
|
| 91 |
+
"available": True,
|
| 92 |
+
"device": "mps",
|
| 93 |
+
"allocated": torch.mps.current_allocated_memory(),
|
| 94 |
+
"driver_allocated": torch.mps.driver_allocated_memory(),
|
| 95 |
+
# MPS doesn't have total memory info readily available
|
| 96 |
+
"total": "N/A (MPS)"
|
| 97 |
+
}
|
| 98 |
+
else:
|
| 99 |
+
return {"available": False, "device": "cpu"}
|
| 100 |
+
|
| 101 |
+
|
| 102 |
+
# Convenience decorators
|
| 103 |
+
def gpu_inference(duration: int = 60):
|
| 104 |
+
"""Decorator for GPU inference tasks."""
|
| 105 |
+
return ZeroGPUManager.gpu_task(duration=duration)
|
| 106 |
+
|
| 107 |
+
|
| 108 |
+
def gpu_model_loading(duration: int = 120):
|
| 109 |
+
"""Decorator for GPU model loading tasks."""
|
| 110 |
+
return ZeroGPUManager.gpu_task(duration=duration)
|
| 111 |
+
|
| 112 |
+
|
| 113 |
+
def gpu_long_task(duration: int = 300):
|
| 114 |
+
"""Decorator for long GPU processing tasks."""
|
| 115 |
+
return ZeroGPUManager.gpu_task(duration=duration)
|