Spaces:
Running
Running
import torch | |
import torchvision.transforms as transforms | |
import gradio as gr | |
from huggingface_hub import hf_hub_download | |
from PIL import Image | |
print("Stage 0: Completed") | |
Fruits = ['Acerola', 'Apple', 'Apricot', 'Avocado', 'Banana', 'Black Berry', 'Blue Berry', 'Cantaloupe', 'Cherry', | |
'Coconut', 'Fig', 'Grapefruit', 'Grape', 'Guava', 'Kiwi Fruit', 'Lemon', 'Lime', 'Mango', 'Olive', 'Orange', | |
'Passion Fruit', 'Peach', 'Pear', 'Pineapple', 'Plum', 'Pomegranate', 'Raspberry', 'Strawberry', 'Tomato', | |
'Watermelon'] | |
device = 'cuda:0' if torch.cuda.is_available() else 'cpu' | |
repo_name = "VinayHajare/fruits30-resnet18" | |
file_name = "fruit_resnet18(99.40%).pt" | |
model_path = hf_hub_download(repo_id = repo_name, filename = file_name) | |
model = torch.load(model_path, map_location=torch.device('cpu')) | |
model.to(device) | |
model.eval() | |
print("Stage 1: Completed ") | |
transform = transforms.Compose([ | |
transforms.Resize(224), | |
transforms.CenterCrop(224), | |
transforms.ToTensor(), | |
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) | |
]) | |
def predict_image(image): | |
image_tensor = transform(Image.fromarray(image)).unsqueeze(0) | |
image_tensor = image_tensor.to(device) | |
with torch.no_grad(): | |
output = model(image_tensor) | |
predicted = torch.argmax(output).item() | |
return Fruits[predicted] | |
interface = gr.Interface( | |
fn = predict_image, | |
inputs = "image", | |
outputs = "text", | |
allow_flagging = "never", | |
theme = gr.themes.soft() | |
) | |
print("Stage 2: Completed") | |
interface.launch(debug = True) | |