Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from transformers import AutoModel, AutoTokenizer
|
3 |
+
from PIL import Image
|
4 |
+
|
5 |
+
# Load the tokenizer and model
|
6 |
+
tokenizer = AutoTokenizer.from_pretrained('ucaslcl/GOT-OCR2_0', trust_remote_code=True)
|
7 |
+
model = AutoModel.from_pretrained('ucaslcl/GOT-OCR2_0', trust_remote_code=True, low_cpu_mem_usage=True, device_map='cuda', use_safetensors=True, pad_token_id=tokenizer.eos_token_id)
|
8 |
+
model = model.eval().cuda()
|
9 |
+
|
10 |
+
# Define the OCR function
|
11 |
+
def perform_ocr(image):
|
12 |
+
# Convert PIL image to RGB format (if necessary)
|
13 |
+
if image.mode != "RGB":
|
14 |
+
image = image.convert("RGB")
|
15 |
+
|
16 |
+
# Save the image to a temporary path
|
17 |
+
image_file_path = 'temp_image.jpg'
|
18 |
+
image.save(image_file_path)
|
19 |
+
|
20 |
+
# Perform OCR using the model
|
21 |
+
res = model.chat(tokenizer, image_file_path, ocr_type='ocr')
|
22 |
+
|
23 |
+
return res
|
24 |
+
|
25 |
+
# Define the Gradio interface
|
26 |
+
interface = gr.Interface(
|
27 |
+
fn=perform_ocr,
|
28 |
+
inputs=gr.Image(type="pil", label="Upload Image"),
|
29 |
+
outputs=gr.Textbox(label="Extracted Text"),
|
30 |
+
title="OCR and Document Search Web Application",
|
31 |
+
description="Upload an image to extract text using the GOT-OCR2_0 model."
|
32 |
+
)
|
33 |
+
|
34 |
+
# Launch the Gradio app
|
35 |
+
interface.launch()
|