Vinay15 commited on
Commit
264b35b
·
verified ·
1 Parent(s): c5b1ae8

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +61 -0
app.py ADDED
@@ -0,0 +1,61 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ import torch
3
+ from datasets import load_dataset
4
+ from transformers import SpeechT5Processor, SpeechT5HifiGan, SpeechT5ForTextToSpeech
5
+
6
+ # Load the fine-tuned model and vocoder for Italian
7
+ model_id = "Sandiago21/speecht5_finetuned_voxpopuli_it"
8
+ model = SpeechT5ForTextToSpeech.from_pretrained(model_id)
9
+ vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan")
10
+
11
+ # Load speaker embeddings dataset
12
+ embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation")
13
+ speaker_embeddings = torch.tensor(embeddings_dataset[7440]["xvector"]).unsqueeze(0)
14
+
15
+ # Load processor for the Italian model
16
+ processor = SpeechT5Processor.from_pretrained(model_id)
17
+
18
+ # Optional: Text cleanup for Italian-specific characters
19
+ replacements = [
20
+ ("à", "a"),
21
+ ("è", "e"),
22
+ ("é", "e"),
23
+ ("ì", "i"),
24
+ ("ò", "o"),
25
+ ("ù", "u"),
26
+ ]
27
+
28
+ # Text-to-speech synthesis function
29
+ def synthesize_speech(text):
30
+ # Clean up text
31
+ for src, dst in replacements:
32
+ text = text.replace(src, dst)
33
+
34
+ # Process input text
35
+ inputs = processor(text=text, return_tensors="pt")
36
+
37
+ # Generate speech using the model and vocoder
38
+ speech = model.generate_speech(inputs["input_ids"], speaker_embeddings, vocoder=vocoder)
39
+
40
+ # Return the generated speech as (sample_rate, audio_array)
41
+ return (16000, speech.cpu().numpy())
42
+
43
+ # Title and description for the Gradio interface
44
+ title = "Italian Text-to-Speech with SpeechT5"
45
+ description = """
46
+ This demo generates speech in Italian using the fine-tuned SpeechT5 model from Hugging Face.
47
+ The model is fine-tuned on the VoxPopuli Italian dataset.
48
+ """
49
+
50
+ # Create Gradio interface
51
+ interface = gr.Interface(
52
+ fn=synthesize_speech,
53
+ inputs=gr.Textbox(label="Input Text", placeholder="Enter Italian text here..."),
54
+ outputs=gr.Audio(label="Generated Speech"),
55
+ title=title,
56
+ description=description,
57
+ examples=["Questa è una dimostrazione di sintesi vocale in italiano."]
58
+ )
59
+
60
+ # Launch the interface
61
+ interface.launch()