Upload 3 files
Browse files- pipeline_controlnet_img2img.py +1114 -0
- pipeline_controlnet_inpaint.py +1344 -0
- stable_diffusion_controlnet_inpaint_img2img.py +1323 -0
pipeline_controlnet_img2img.py
ADDED
@@ -0,0 +1,1114 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2023 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
|
16 |
+
import inspect
|
17 |
+
import os
|
18 |
+
import warnings
|
19 |
+
from typing import Any, Callable, Dict, List, Optional, Tuple, Union
|
20 |
+
|
21 |
+
import numpy as np
|
22 |
+
import PIL.Image
|
23 |
+
import torch
|
24 |
+
import torch.nn.functional as F
|
25 |
+
from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer
|
26 |
+
|
27 |
+
from ...image_processor import VaeImageProcessor
|
28 |
+
from ...loaders import TextualInversionLoaderMixin
|
29 |
+
from ...models import AutoencoderKL, ControlNetModel, UNet2DConditionModel
|
30 |
+
from ...schedulers import KarrasDiffusionSchedulers
|
31 |
+
from ...utils import (
|
32 |
+
PIL_INTERPOLATION,
|
33 |
+
deprecate,
|
34 |
+
is_accelerate_available,
|
35 |
+
is_accelerate_version,
|
36 |
+
is_compiled_module,
|
37 |
+
logging,
|
38 |
+
randn_tensor,
|
39 |
+
replace_example_docstring,
|
40 |
+
)
|
41 |
+
from ..pipeline_utils import DiffusionPipeline
|
42 |
+
from ..stable_diffusion import StableDiffusionPipelineOutput
|
43 |
+
from ..stable_diffusion.safety_checker import StableDiffusionSafetyChecker
|
44 |
+
from .multicontrolnet import MultiControlNetModel
|
45 |
+
|
46 |
+
|
47 |
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
48 |
+
|
49 |
+
|
50 |
+
EXAMPLE_DOC_STRING = """
|
51 |
+
Examples:
|
52 |
+
```py
|
53 |
+
>>> # !pip install opencv-python transformers accelerate
|
54 |
+
>>> from diffusers import StableDiffusionControlNetImg2ImgPipeline, ControlNetModel, UniPCMultistepScheduler
|
55 |
+
>>> from diffusers.utils import load_image
|
56 |
+
>>> import numpy as np
|
57 |
+
>>> import torch
|
58 |
+
|
59 |
+
>>> import cv2
|
60 |
+
>>> from PIL import Image
|
61 |
+
|
62 |
+
>>> # download an image
|
63 |
+
>>> image = load_image(
|
64 |
+
... "https://hf.co/datasets/huggingface/documentation-images/resolve/main/diffusers/input_image_vermeer.png"
|
65 |
+
... )
|
66 |
+
>>> np_image = np.array(image)
|
67 |
+
|
68 |
+
>>> # get canny image
|
69 |
+
>>> np_image = cv2.Canny(np_image, 100, 200)
|
70 |
+
>>> np_image = np_image[:, :, None]
|
71 |
+
>>> np_image = np.concatenate([np_image, np_image, np_image], axis=2)
|
72 |
+
>>> canny_image = Image.fromarray(np_image)
|
73 |
+
|
74 |
+
>>> # load control net and stable diffusion v1-5
|
75 |
+
>>> controlnet = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-canny", torch_dtype=torch.float16)
|
76 |
+
>>> pipe = StableDiffusionControlNetImg2ImgPipeline.from_pretrained(
|
77 |
+
... "runwayml/stable-diffusion-v1-5", controlnet=controlnet, torch_dtype=torch.float16
|
78 |
+
... )
|
79 |
+
|
80 |
+
>>> # speed up diffusion process with faster scheduler and memory optimization
|
81 |
+
>>> pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config)
|
82 |
+
>>> pipe.enable_model_cpu_offload()
|
83 |
+
|
84 |
+
>>> # generate image
|
85 |
+
>>> generator = torch.manual_seed(0)
|
86 |
+
>>> image = pipe(
|
87 |
+
... "futuristic-looking woman",
|
88 |
+
... num_inference_steps=20,
|
89 |
+
... generator=generator,
|
90 |
+
... image=image,
|
91 |
+
... control_image=canny_image,
|
92 |
+
... ).images[0]
|
93 |
+
```
|
94 |
+
"""
|
95 |
+
|
96 |
+
|
97 |
+
def prepare_image(image):
|
98 |
+
if isinstance(image, torch.Tensor):
|
99 |
+
# Batch single image
|
100 |
+
if image.ndim == 3:
|
101 |
+
image = image.unsqueeze(0)
|
102 |
+
|
103 |
+
image = image.to(dtype=torch.float32)
|
104 |
+
else:
|
105 |
+
# preprocess image
|
106 |
+
if isinstance(image, (PIL.Image.Image, np.ndarray)):
|
107 |
+
image = [image]
|
108 |
+
|
109 |
+
if isinstance(image, list) and isinstance(image[0], PIL.Image.Image):
|
110 |
+
image = [np.array(i.convert("RGB"))[None, :] for i in image]
|
111 |
+
image = np.concatenate(image, axis=0)
|
112 |
+
elif isinstance(image, list) and isinstance(image[0], np.ndarray):
|
113 |
+
image = np.concatenate([i[None, :] for i in image], axis=0)
|
114 |
+
|
115 |
+
image = image.transpose(0, 3, 1, 2)
|
116 |
+
image = torch.from_numpy(image).to(dtype=torch.float32) / 127.5 - 1.0
|
117 |
+
|
118 |
+
return image
|
119 |
+
|
120 |
+
|
121 |
+
class StableDiffusionControlNetImg2ImgPipeline(DiffusionPipeline, TextualInversionLoaderMixin):
|
122 |
+
r"""
|
123 |
+
Pipeline for text-to-image generation using Stable Diffusion with ControlNet guidance.
|
124 |
+
|
125 |
+
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the
|
126 |
+
library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)
|
127 |
+
|
128 |
+
In addition the pipeline inherits the following loading methods:
|
129 |
+
- *Textual-Inversion*: [`loaders.TextualInversionLoaderMixin.load_textual_inversion`]
|
130 |
+
|
131 |
+
Args:
|
132 |
+
vae ([`AutoencoderKL`]):
|
133 |
+
Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
|
134 |
+
text_encoder ([`CLIPTextModel`]):
|
135 |
+
Frozen text-encoder. Stable Diffusion uses the text portion of
|
136 |
+
[CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), specifically
|
137 |
+
the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant.
|
138 |
+
tokenizer (`CLIPTokenizer`):
|
139 |
+
Tokenizer of class
|
140 |
+
[CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer).
|
141 |
+
unet ([`UNet2DConditionModel`]): Conditional U-Net architecture to denoise the encoded image latents.
|
142 |
+
controlnet ([`ControlNetModel`] or `List[ControlNetModel]`):
|
143 |
+
Provides additional conditioning to the unet during the denoising process. If you set multiple ControlNets
|
144 |
+
as a list, the outputs from each ControlNet are added together to create one combined additional
|
145 |
+
conditioning.
|
146 |
+
scheduler ([`SchedulerMixin`]):
|
147 |
+
A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of
|
148 |
+
[`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
|
149 |
+
safety_checker ([`StableDiffusionSafetyChecker`]):
|
150 |
+
Classification module that estimates whether generated images could be considered offensive or harmful.
|
151 |
+
Please, refer to the [model card](https://huggingface.co/runwayml/stable-diffusion-v1-5) for details.
|
152 |
+
feature_extractor ([`CLIPImageProcessor`]):
|
153 |
+
Model that extracts features from generated images to be used as inputs for the `safety_checker`.
|
154 |
+
"""
|
155 |
+
_optional_components = ["safety_checker", "feature_extractor"]
|
156 |
+
|
157 |
+
def __init__(
|
158 |
+
self,
|
159 |
+
vae: AutoencoderKL,
|
160 |
+
text_encoder: CLIPTextModel,
|
161 |
+
tokenizer: CLIPTokenizer,
|
162 |
+
unet: UNet2DConditionModel,
|
163 |
+
controlnet: Union[ControlNetModel, List[ControlNetModel], Tuple[ControlNetModel], MultiControlNetModel],
|
164 |
+
scheduler: KarrasDiffusionSchedulers,
|
165 |
+
safety_checker: StableDiffusionSafetyChecker,
|
166 |
+
feature_extractor: CLIPImageProcessor,
|
167 |
+
requires_safety_checker: bool = True,
|
168 |
+
):
|
169 |
+
super().__init__()
|
170 |
+
|
171 |
+
if safety_checker is None and requires_safety_checker:
|
172 |
+
logger.warning(
|
173 |
+
f"You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure"
|
174 |
+
" that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered"
|
175 |
+
" results in services or applications open to the public. Both the diffusers team and Hugging Face"
|
176 |
+
" strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling"
|
177 |
+
" it only for use-cases that involve analyzing network behavior or auditing its results. For more"
|
178 |
+
" information, please have a look at https://github.com/huggingface/diffusers/pull/254 ."
|
179 |
+
)
|
180 |
+
|
181 |
+
if safety_checker is not None and feature_extractor is None:
|
182 |
+
raise ValueError(
|
183 |
+
"Make sure to define a feature extractor when loading {self.__class__} if you want to use the safety"
|
184 |
+
" checker. If you do not want to use the safety checker, you can pass `'safety_checker=None'` instead."
|
185 |
+
)
|
186 |
+
|
187 |
+
if isinstance(controlnet, (list, tuple)):
|
188 |
+
controlnet = MultiControlNetModel(controlnet)
|
189 |
+
|
190 |
+
self.register_modules(
|
191 |
+
vae=vae,
|
192 |
+
text_encoder=text_encoder,
|
193 |
+
tokenizer=tokenizer,
|
194 |
+
unet=unet,
|
195 |
+
controlnet=controlnet,
|
196 |
+
scheduler=scheduler,
|
197 |
+
safety_checker=safety_checker,
|
198 |
+
feature_extractor=feature_extractor,
|
199 |
+
)
|
200 |
+
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
|
201 |
+
self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor)
|
202 |
+
self.register_to_config(requires_safety_checker=requires_safety_checker)
|
203 |
+
|
204 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.enable_vae_slicing
|
205 |
+
def enable_vae_slicing(self):
|
206 |
+
r"""
|
207 |
+
Enable sliced VAE decoding.
|
208 |
+
|
209 |
+
When this option is enabled, the VAE will split the input tensor in slices to compute decoding in several
|
210 |
+
steps. This is useful to save some memory and allow larger batch sizes.
|
211 |
+
"""
|
212 |
+
self.vae.enable_slicing()
|
213 |
+
|
214 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.disable_vae_slicing
|
215 |
+
def disable_vae_slicing(self):
|
216 |
+
r"""
|
217 |
+
Disable sliced VAE decoding. If `enable_vae_slicing` was previously invoked, this method will go back to
|
218 |
+
computing decoding in one step.
|
219 |
+
"""
|
220 |
+
self.vae.disable_slicing()
|
221 |
+
|
222 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.enable_vae_tiling
|
223 |
+
def enable_vae_tiling(self):
|
224 |
+
r"""
|
225 |
+
Enable tiled VAE decoding.
|
226 |
+
|
227 |
+
When this option is enabled, the VAE will split the input tensor into tiles to compute decoding and encoding in
|
228 |
+
several steps. This is useful to save a large amount of memory and to allow the processing of larger images.
|
229 |
+
"""
|
230 |
+
self.vae.enable_tiling()
|
231 |
+
|
232 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.disable_vae_tiling
|
233 |
+
def disable_vae_tiling(self):
|
234 |
+
r"""
|
235 |
+
Disable tiled VAE decoding. If `enable_vae_tiling` was previously invoked, this method will go back to
|
236 |
+
computing decoding in one step.
|
237 |
+
"""
|
238 |
+
self.vae.disable_tiling()
|
239 |
+
|
240 |
+
def enable_sequential_cpu_offload(self, gpu_id=0):
|
241 |
+
r"""
|
242 |
+
Offloads all models to CPU using accelerate, significantly reducing memory usage. When called, unet,
|
243 |
+
text_encoder, vae, controlnet, and safety checker have their state dicts saved to CPU and then are moved to a
|
244 |
+
`torch.device('meta') and loaded to GPU only when their specific submodule has its `forward` method called.
|
245 |
+
Note that offloading happens on a submodule basis. Memory savings are higher than with
|
246 |
+
`enable_model_cpu_offload`, but performance is lower.
|
247 |
+
"""
|
248 |
+
if is_accelerate_available():
|
249 |
+
from accelerate import cpu_offload
|
250 |
+
else:
|
251 |
+
raise ImportError("Please install accelerate via `pip install accelerate`")
|
252 |
+
|
253 |
+
device = torch.device(f"cuda:{gpu_id}")
|
254 |
+
|
255 |
+
for cpu_offloaded_model in [self.unet, self.text_encoder, self.vae, self.controlnet]:
|
256 |
+
cpu_offload(cpu_offloaded_model, device)
|
257 |
+
|
258 |
+
if self.safety_checker is not None:
|
259 |
+
cpu_offload(self.safety_checker, execution_device=device, offload_buffers=True)
|
260 |
+
|
261 |
+
def enable_model_cpu_offload(self, gpu_id=0):
|
262 |
+
r"""
|
263 |
+
Offloads all models to CPU using accelerate, reducing memory usage with a low impact on performance. Compared
|
264 |
+
to `enable_sequential_cpu_offload`, this method moves one whole model at a time to the GPU when its `forward`
|
265 |
+
method is called, and the model remains in GPU until the next model runs. Memory savings are lower than with
|
266 |
+
`enable_sequential_cpu_offload`, but performance is much better due to the iterative execution of the `unet`.
|
267 |
+
"""
|
268 |
+
if is_accelerate_available() and is_accelerate_version(">=", "0.17.0.dev0"):
|
269 |
+
from accelerate import cpu_offload_with_hook
|
270 |
+
else:
|
271 |
+
raise ImportError("`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.")
|
272 |
+
|
273 |
+
device = torch.device(f"cuda:{gpu_id}")
|
274 |
+
|
275 |
+
hook = None
|
276 |
+
for cpu_offloaded_model in [self.text_encoder, self.unet, self.vae]:
|
277 |
+
_, hook = cpu_offload_with_hook(cpu_offloaded_model, device, prev_module_hook=hook)
|
278 |
+
|
279 |
+
if self.safety_checker is not None:
|
280 |
+
# the safety checker can offload the vae again
|
281 |
+
_, hook = cpu_offload_with_hook(self.safety_checker, device, prev_module_hook=hook)
|
282 |
+
|
283 |
+
# control net hook has be manually offloaded as it alternates with unet
|
284 |
+
cpu_offload_with_hook(self.controlnet, device)
|
285 |
+
|
286 |
+
# We'll offload the last model manually.
|
287 |
+
self.final_offload_hook = hook
|
288 |
+
|
289 |
+
@property
|
290 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device
|
291 |
+
def _execution_device(self):
|
292 |
+
r"""
|
293 |
+
Returns the device on which the pipeline's models will be executed. After calling
|
294 |
+
`pipeline.enable_sequential_cpu_offload()` the execution device can only be inferred from Accelerate's module
|
295 |
+
hooks.
|
296 |
+
"""
|
297 |
+
if not hasattr(self.unet, "_hf_hook"):
|
298 |
+
return self.device
|
299 |
+
for module in self.unet.modules():
|
300 |
+
if (
|
301 |
+
hasattr(module, "_hf_hook")
|
302 |
+
and hasattr(module._hf_hook, "execution_device")
|
303 |
+
and module._hf_hook.execution_device is not None
|
304 |
+
):
|
305 |
+
return torch.device(module._hf_hook.execution_device)
|
306 |
+
return self.device
|
307 |
+
|
308 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._encode_prompt
|
309 |
+
def _encode_prompt(
|
310 |
+
self,
|
311 |
+
prompt,
|
312 |
+
device,
|
313 |
+
num_images_per_prompt,
|
314 |
+
do_classifier_free_guidance,
|
315 |
+
negative_prompt=None,
|
316 |
+
prompt_embeds: Optional[torch.FloatTensor] = None,
|
317 |
+
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
|
318 |
+
):
|
319 |
+
r"""
|
320 |
+
Encodes the prompt into text encoder hidden states.
|
321 |
+
|
322 |
+
Args:
|
323 |
+
prompt (`str` or `List[str]`, *optional*):
|
324 |
+
prompt to be encoded
|
325 |
+
device: (`torch.device`):
|
326 |
+
torch device
|
327 |
+
num_images_per_prompt (`int`):
|
328 |
+
number of images that should be generated per prompt
|
329 |
+
do_classifier_free_guidance (`bool`):
|
330 |
+
whether to use classifier free guidance or not
|
331 |
+
negative_prompt (`str` or `List[str]`, *optional*):
|
332 |
+
The prompt or prompts not to guide the image generation. If not defined, one has to pass
|
333 |
+
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
|
334 |
+
less than `1`).
|
335 |
+
prompt_embeds (`torch.FloatTensor`, *optional*):
|
336 |
+
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
|
337 |
+
provided, text embeddings will be generated from `prompt` input argument.
|
338 |
+
negative_prompt_embeds (`torch.FloatTensor`, *optional*):
|
339 |
+
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
340 |
+
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
|
341 |
+
argument.
|
342 |
+
"""
|
343 |
+
if prompt is not None and isinstance(prompt, str):
|
344 |
+
batch_size = 1
|
345 |
+
elif prompt is not None and isinstance(prompt, list):
|
346 |
+
batch_size = len(prompt)
|
347 |
+
else:
|
348 |
+
batch_size = prompt_embeds.shape[0]
|
349 |
+
|
350 |
+
if prompt_embeds is None:
|
351 |
+
# textual inversion: procecss multi-vector tokens if necessary
|
352 |
+
if isinstance(self, TextualInversionLoaderMixin):
|
353 |
+
prompt = self.maybe_convert_prompt(prompt, self.tokenizer)
|
354 |
+
|
355 |
+
text_inputs = self.tokenizer(
|
356 |
+
prompt,
|
357 |
+
padding="max_length",
|
358 |
+
max_length=self.tokenizer.model_max_length,
|
359 |
+
truncation=True,
|
360 |
+
return_tensors="pt",
|
361 |
+
)
|
362 |
+
text_input_ids = text_inputs.input_ids
|
363 |
+
untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids
|
364 |
+
|
365 |
+
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(
|
366 |
+
text_input_ids, untruncated_ids
|
367 |
+
):
|
368 |
+
removed_text = self.tokenizer.batch_decode(
|
369 |
+
untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1]
|
370 |
+
)
|
371 |
+
logger.warning(
|
372 |
+
"The following part of your input was truncated because CLIP can only handle sequences up to"
|
373 |
+
f" {self.tokenizer.model_max_length} tokens: {removed_text}"
|
374 |
+
)
|
375 |
+
|
376 |
+
if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask:
|
377 |
+
attention_mask = text_inputs.attention_mask.to(device)
|
378 |
+
else:
|
379 |
+
attention_mask = None
|
380 |
+
|
381 |
+
prompt_embeds = self.text_encoder(
|
382 |
+
text_input_ids.to(device),
|
383 |
+
attention_mask=attention_mask,
|
384 |
+
)
|
385 |
+
prompt_embeds = prompt_embeds[0]
|
386 |
+
|
387 |
+
prompt_embeds = prompt_embeds.to(dtype=self.text_encoder.dtype, device=device)
|
388 |
+
|
389 |
+
bs_embed, seq_len, _ = prompt_embeds.shape
|
390 |
+
# duplicate text embeddings for each generation per prompt, using mps friendly method
|
391 |
+
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
|
392 |
+
prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1)
|
393 |
+
|
394 |
+
# get unconditional embeddings for classifier free guidance
|
395 |
+
if do_classifier_free_guidance and negative_prompt_embeds is None:
|
396 |
+
uncond_tokens: List[str]
|
397 |
+
if negative_prompt is None:
|
398 |
+
uncond_tokens = [""] * batch_size
|
399 |
+
elif prompt is not None and type(prompt) is not type(negative_prompt):
|
400 |
+
raise TypeError(
|
401 |
+
f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
|
402 |
+
f" {type(prompt)}."
|
403 |
+
)
|
404 |
+
elif isinstance(negative_prompt, str):
|
405 |
+
uncond_tokens = [negative_prompt]
|
406 |
+
elif batch_size != len(negative_prompt):
|
407 |
+
raise ValueError(
|
408 |
+
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
|
409 |
+
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
|
410 |
+
" the batch size of `prompt`."
|
411 |
+
)
|
412 |
+
else:
|
413 |
+
uncond_tokens = negative_prompt
|
414 |
+
|
415 |
+
# textual inversion: procecss multi-vector tokens if necessary
|
416 |
+
if isinstance(self, TextualInversionLoaderMixin):
|
417 |
+
uncond_tokens = self.maybe_convert_prompt(uncond_tokens, self.tokenizer)
|
418 |
+
|
419 |
+
max_length = prompt_embeds.shape[1]
|
420 |
+
uncond_input = self.tokenizer(
|
421 |
+
uncond_tokens,
|
422 |
+
padding="max_length",
|
423 |
+
max_length=max_length,
|
424 |
+
truncation=True,
|
425 |
+
return_tensors="pt",
|
426 |
+
)
|
427 |
+
|
428 |
+
if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask:
|
429 |
+
attention_mask = uncond_input.attention_mask.to(device)
|
430 |
+
else:
|
431 |
+
attention_mask = None
|
432 |
+
|
433 |
+
negative_prompt_embeds = self.text_encoder(
|
434 |
+
uncond_input.input_ids.to(device),
|
435 |
+
attention_mask=attention_mask,
|
436 |
+
)
|
437 |
+
negative_prompt_embeds = negative_prompt_embeds[0]
|
438 |
+
|
439 |
+
if do_classifier_free_guidance:
|
440 |
+
# duplicate unconditional embeddings for each generation per prompt, using mps friendly method
|
441 |
+
seq_len = negative_prompt_embeds.shape[1]
|
442 |
+
|
443 |
+
negative_prompt_embeds = negative_prompt_embeds.to(dtype=self.text_encoder.dtype, device=device)
|
444 |
+
|
445 |
+
negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1)
|
446 |
+
negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
|
447 |
+
|
448 |
+
# For classifier free guidance, we need to do two forward passes.
|
449 |
+
# Here we concatenate the unconditional and text embeddings into a single batch
|
450 |
+
# to avoid doing two forward passes
|
451 |
+
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds])
|
452 |
+
|
453 |
+
return prompt_embeds
|
454 |
+
|
455 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.run_safety_checker
|
456 |
+
def run_safety_checker(self, image, device, dtype):
|
457 |
+
if self.safety_checker is None:
|
458 |
+
has_nsfw_concept = None
|
459 |
+
else:
|
460 |
+
if torch.is_tensor(image):
|
461 |
+
feature_extractor_input = self.image_processor.postprocess(image, output_type="pil")
|
462 |
+
else:
|
463 |
+
feature_extractor_input = self.image_processor.numpy_to_pil(image)
|
464 |
+
safety_checker_input = self.feature_extractor(feature_extractor_input, return_tensors="pt").to(device)
|
465 |
+
image, has_nsfw_concept = self.safety_checker(
|
466 |
+
images=image, clip_input=safety_checker_input.pixel_values.to(dtype)
|
467 |
+
)
|
468 |
+
return image, has_nsfw_concept
|
469 |
+
|
470 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.decode_latents
|
471 |
+
def decode_latents(self, latents):
|
472 |
+
warnings.warn(
|
473 |
+
"The decode_latents method is deprecated and will be removed in a future version. Please"
|
474 |
+
" use VaeImageProcessor instead",
|
475 |
+
FutureWarning,
|
476 |
+
)
|
477 |
+
latents = 1 / self.vae.config.scaling_factor * latents
|
478 |
+
image = self.vae.decode(latents, return_dict=False)[0]
|
479 |
+
image = (image / 2 + 0.5).clamp(0, 1)
|
480 |
+
# we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16
|
481 |
+
image = image.cpu().permute(0, 2, 3, 1).float().numpy()
|
482 |
+
return image
|
483 |
+
|
484 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs
|
485 |
+
def prepare_extra_step_kwargs(self, generator, eta):
|
486 |
+
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
|
487 |
+
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
|
488 |
+
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
|
489 |
+
# and should be between [0, 1]
|
490 |
+
|
491 |
+
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
492 |
+
extra_step_kwargs = {}
|
493 |
+
if accepts_eta:
|
494 |
+
extra_step_kwargs["eta"] = eta
|
495 |
+
|
496 |
+
# check if the scheduler accepts generator
|
497 |
+
accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
498 |
+
if accepts_generator:
|
499 |
+
extra_step_kwargs["generator"] = generator
|
500 |
+
return extra_step_kwargs
|
501 |
+
|
502 |
+
def check_inputs(
|
503 |
+
self,
|
504 |
+
prompt,
|
505 |
+
image,
|
506 |
+
height,
|
507 |
+
width,
|
508 |
+
callback_steps,
|
509 |
+
negative_prompt=None,
|
510 |
+
prompt_embeds=None,
|
511 |
+
negative_prompt_embeds=None,
|
512 |
+
controlnet_conditioning_scale=1.0,
|
513 |
+
):
|
514 |
+
if height % 8 != 0 or width % 8 != 0:
|
515 |
+
raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")
|
516 |
+
|
517 |
+
if (callback_steps is None) or (
|
518 |
+
callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0)
|
519 |
+
):
|
520 |
+
raise ValueError(
|
521 |
+
f"`callback_steps` has to be a positive integer but is {callback_steps} of type"
|
522 |
+
f" {type(callback_steps)}."
|
523 |
+
)
|
524 |
+
|
525 |
+
if prompt is not None and prompt_embeds is not None:
|
526 |
+
raise ValueError(
|
527 |
+
f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
|
528 |
+
" only forward one of the two."
|
529 |
+
)
|
530 |
+
elif prompt is None and prompt_embeds is None:
|
531 |
+
raise ValueError(
|
532 |
+
"Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
|
533 |
+
)
|
534 |
+
elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
|
535 |
+
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
|
536 |
+
|
537 |
+
if negative_prompt is not None and negative_prompt_embeds is not None:
|
538 |
+
raise ValueError(
|
539 |
+
f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:"
|
540 |
+
f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
|
541 |
+
)
|
542 |
+
|
543 |
+
if prompt_embeds is not None and negative_prompt_embeds is not None:
|
544 |
+
if prompt_embeds.shape != negative_prompt_embeds.shape:
|
545 |
+
raise ValueError(
|
546 |
+
"`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but"
|
547 |
+
f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`"
|
548 |
+
f" {negative_prompt_embeds.shape}."
|
549 |
+
)
|
550 |
+
|
551 |
+
# `prompt` needs more sophisticated handling when there are multiple
|
552 |
+
# conditionings.
|
553 |
+
if isinstance(self.controlnet, MultiControlNetModel):
|
554 |
+
if isinstance(prompt, list):
|
555 |
+
logger.warning(
|
556 |
+
f"You have {len(self.controlnet.nets)} ControlNets and you have passed {len(prompt)}"
|
557 |
+
" prompts. The conditionings will be fixed across the prompts."
|
558 |
+
)
|
559 |
+
|
560 |
+
# Check `image`
|
561 |
+
is_compiled = hasattr(F, "scaled_dot_product_attention") and isinstance(
|
562 |
+
self.controlnet, torch._dynamo.eval_frame.OptimizedModule
|
563 |
+
)
|
564 |
+
if (
|
565 |
+
isinstance(self.controlnet, ControlNetModel)
|
566 |
+
or is_compiled
|
567 |
+
and isinstance(self.controlnet._orig_mod, ControlNetModel)
|
568 |
+
):
|
569 |
+
self.check_image(image, prompt, prompt_embeds)
|
570 |
+
elif (
|
571 |
+
isinstance(self.controlnet, MultiControlNetModel)
|
572 |
+
or is_compiled
|
573 |
+
and isinstance(self.controlnet._orig_mod, MultiControlNetModel)
|
574 |
+
):
|
575 |
+
if not isinstance(image, list):
|
576 |
+
raise TypeError("For multiple controlnets: `image` must be type `list`")
|
577 |
+
|
578 |
+
# When `image` is a nested list:
|
579 |
+
# (e.g. [[canny_image_1, pose_image_1], [canny_image_2, pose_image_2]])
|
580 |
+
elif any(isinstance(i, list) for i in image):
|
581 |
+
raise ValueError("A single batch of multiple conditionings are supported at the moment.")
|
582 |
+
elif len(image) != len(self.controlnet.nets):
|
583 |
+
raise ValueError(
|
584 |
+
"For multiple controlnets: `image` must have the same length as the number of controlnets."
|
585 |
+
)
|
586 |
+
|
587 |
+
for image_ in image:
|
588 |
+
self.check_image(image_, prompt, prompt_embeds)
|
589 |
+
else:
|
590 |
+
assert False
|
591 |
+
|
592 |
+
# Check `controlnet_conditioning_scale`
|
593 |
+
if (
|
594 |
+
isinstance(self.controlnet, ControlNetModel)
|
595 |
+
or is_compiled
|
596 |
+
and isinstance(self.controlnet._orig_mod, ControlNetModel)
|
597 |
+
):
|
598 |
+
if not isinstance(controlnet_conditioning_scale, float):
|
599 |
+
raise TypeError("For single controlnet: `controlnet_conditioning_scale` must be type `float`.")
|
600 |
+
elif (
|
601 |
+
isinstance(self.controlnet, MultiControlNetModel)
|
602 |
+
or is_compiled
|
603 |
+
and isinstance(self.controlnet._orig_mod, MultiControlNetModel)
|
604 |
+
):
|
605 |
+
if isinstance(controlnet_conditioning_scale, list):
|
606 |
+
if any(isinstance(i, list) for i in controlnet_conditioning_scale):
|
607 |
+
raise ValueError("A single batch of multiple conditionings are supported at the moment.")
|
608 |
+
elif isinstance(controlnet_conditioning_scale, list) and len(controlnet_conditioning_scale) != len(
|
609 |
+
self.controlnet.nets
|
610 |
+
):
|
611 |
+
raise ValueError(
|
612 |
+
"For multiple controlnets: When `controlnet_conditioning_scale` is specified as `list`, it must have"
|
613 |
+
" the same length as the number of controlnets"
|
614 |
+
)
|
615 |
+
else:
|
616 |
+
assert False
|
617 |
+
|
618 |
+
def check_image(self, image, prompt, prompt_embeds):
|
619 |
+
image_is_pil = isinstance(image, PIL.Image.Image)
|
620 |
+
image_is_tensor = isinstance(image, torch.Tensor)
|
621 |
+
image_is_pil_list = isinstance(image, list) and isinstance(image[0], PIL.Image.Image)
|
622 |
+
image_is_tensor_list = isinstance(image, list) and isinstance(image[0], torch.Tensor)
|
623 |
+
|
624 |
+
if not image_is_pil and not image_is_tensor and not image_is_pil_list and not image_is_tensor_list:
|
625 |
+
raise TypeError(
|
626 |
+
"image must be passed and be one of PIL image, torch tensor, list of PIL images, or list of torch tensors"
|
627 |
+
)
|
628 |
+
|
629 |
+
if image_is_pil:
|
630 |
+
image_batch_size = 1
|
631 |
+
elif image_is_tensor:
|
632 |
+
image_batch_size = image.shape[0]
|
633 |
+
elif image_is_pil_list:
|
634 |
+
image_batch_size = len(image)
|
635 |
+
elif image_is_tensor_list:
|
636 |
+
image_batch_size = len(image)
|
637 |
+
|
638 |
+
if prompt is not None and isinstance(prompt, str):
|
639 |
+
prompt_batch_size = 1
|
640 |
+
elif prompt is not None and isinstance(prompt, list):
|
641 |
+
prompt_batch_size = len(prompt)
|
642 |
+
elif prompt_embeds is not None:
|
643 |
+
prompt_batch_size = prompt_embeds.shape[0]
|
644 |
+
|
645 |
+
if image_batch_size != 1 and image_batch_size != prompt_batch_size:
|
646 |
+
raise ValueError(
|
647 |
+
f"If image batch size is not 1, image batch size must be same as prompt batch size. image batch size: {image_batch_size}, prompt batch size: {prompt_batch_size}"
|
648 |
+
)
|
649 |
+
|
650 |
+
# Copied from diffusers.pipelines.controlnet.pipeline_controlnet.StableDiffusionControlNetPipeline.prepare_image
|
651 |
+
def prepare_control_image(
|
652 |
+
self,
|
653 |
+
image,
|
654 |
+
width,
|
655 |
+
height,
|
656 |
+
batch_size,
|
657 |
+
num_images_per_prompt,
|
658 |
+
device,
|
659 |
+
dtype,
|
660 |
+
do_classifier_free_guidance=False,
|
661 |
+
guess_mode=False,
|
662 |
+
):
|
663 |
+
if not isinstance(image, torch.Tensor):
|
664 |
+
if isinstance(image, PIL.Image.Image):
|
665 |
+
image = [image]
|
666 |
+
|
667 |
+
if isinstance(image[0], PIL.Image.Image):
|
668 |
+
images = []
|
669 |
+
|
670 |
+
for image_ in image:
|
671 |
+
image_ = image_.convert("RGB")
|
672 |
+
image_ = image_.resize((width, height), resample=PIL_INTERPOLATION["lanczos"])
|
673 |
+
image_ = np.array(image_)
|
674 |
+
image_ = image_[None, :]
|
675 |
+
images.append(image_)
|
676 |
+
|
677 |
+
image = images
|
678 |
+
|
679 |
+
image = np.concatenate(image, axis=0)
|
680 |
+
image = np.array(image).astype(np.float32) / 255.0
|
681 |
+
image = image.transpose(0, 3, 1, 2)
|
682 |
+
image = torch.from_numpy(image)
|
683 |
+
elif isinstance(image[0], torch.Tensor):
|
684 |
+
image = torch.cat(image, dim=0)
|
685 |
+
|
686 |
+
image_batch_size = image.shape[0]
|
687 |
+
|
688 |
+
if image_batch_size == 1:
|
689 |
+
repeat_by = batch_size
|
690 |
+
else:
|
691 |
+
# image batch size is the same as prompt batch size
|
692 |
+
repeat_by = num_images_per_prompt
|
693 |
+
|
694 |
+
image = image.repeat_interleave(repeat_by, dim=0)
|
695 |
+
|
696 |
+
image = image.to(device=device, dtype=dtype)
|
697 |
+
|
698 |
+
if do_classifier_free_guidance and not guess_mode:
|
699 |
+
image = torch.cat([image] * 2)
|
700 |
+
|
701 |
+
return image
|
702 |
+
|
703 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_img2img.StableDiffusionImg2ImgPipeline.get_timesteps
|
704 |
+
def get_timesteps(self, num_inference_steps, strength, device):
|
705 |
+
# get the original timestep using init_timestep
|
706 |
+
init_timestep = min(int(num_inference_steps * strength), num_inference_steps)
|
707 |
+
|
708 |
+
t_start = max(num_inference_steps - init_timestep, 0)
|
709 |
+
timesteps = self.scheduler.timesteps[t_start * self.scheduler.order :]
|
710 |
+
|
711 |
+
return timesteps, num_inference_steps - t_start
|
712 |
+
|
713 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_img2img.StableDiffusionImg2ImgPipeline.prepare_latents
|
714 |
+
def prepare_latents(self, image, timestep, batch_size, num_images_per_prompt, dtype, device, generator=None):
|
715 |
+
if not isinstance(image, (torch.Tensor, PIL.Image.Image, list)):
|
716 |
+
raise ValueError(
|
717 |
+
f"`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(image)}"
|
718 |
+
)
|
719 |
+
|
720 |
+
image = image.to(device=device, dtype=dtype)
|
721 |
+
|
722 |
+
batch_size = batch_size * num_images_per_prompt
|
723 |
+
if isinstance(generator, list) and len(generator) != batch_size:
|
724 |
+
raise ValueError(
|
725 |
+
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
|
726 |
+
f" size of {batch_size}. Make sure the batch size matches the length of the generators."
|
727 |
+
)
|
728 |
+
|
729 |
+
if isinstance(generator, list):
|
730 |
+
init_latents = [
|
731 |
+
self.vae.encode(image[i : i + 1]).latent_dist.sample(generator[i]) for i in range(batch_size)
|
732 |
+
]
|
733 |
+
init_latents = torch.cat(init_latents, dim=0)
|
734 |
+
else:
|
735 |
+
init_latents = self.vae.encode(image).latent_dist.sample(generator)
|
736 |
+
|
737 |
+
init_latents = self.vae.config.scaling_factor * init_latents
|
738 |
+
|
739 |
+
if batch_size > init_latents.shape[0] and batch_size % init_latents.shape[0] == 0:
|
740 |
+
# expand init_latents for batch_size
|
741 |
+
deprecation_message = (
|
742 |
+
f"You have passed {batch_size} text prompts (`prompt`), but only {init_latents.shape[0]} initial"
|
743 |
+
" images (`image`). Initial images are now duplicating to match the number of text prompts. Note"
|
744 |
+
" that this behavior is deprecated and will be removed in a version 1.0.0. Please make sure to update"
|
745 |
+
" your script to pass as many initial images as text prompts to suppress this warning."
|
746 |
+
)
|
747 |
+
deprecate("len(prompt) != len(image)", "1.0.0", deprecation_message, standard_warn=False)
|
748 |
+
additional_image_per_prompt = batch_size // init_latents.shape[0]
|
749 |
+
init_latents = torch.cat([init_latents] * additional_image_per_prompt, dim=0)
|
750 |
+
elif batch_size > init_latents.shape[0] and batch_size % init_latents.shape[0] != 0:
|
751 |
+
raise ValueError(
|
752 |
+
f"Cannot duplicate `image` of batch size {init_latents.shape[0]} to {batch_size} text prompts."
|
753 |
+
)
|
754 |
+
else:
|
755 |
+
init_latents = torch.cat([init_latents], dim=0)
|
756 |
+
|
757 |
+
shape = init_latents.shape
|
758 |
+
noise = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
|
759 |
+
|
760 |
+
# get latents
|
761 |
+
init_latents = self.scheduler.add_noise(init_latents, noise, timestep)
|
762 |
+
latents = init_latents
|
763 |
+
|
764 |
+
return latents
|
765 |
+
|
766 |
+
def _default_height_width(self, height, width, image):
|
767 |
+
# NOTE: It is possible that a list of images have different
|
768 |
+
# dimensions for each image, so just checking the first image
|
769 |
+
# is not _exactly_ correct, but it is simple.
|
770 |
+
while isinstance(image, list):
|
771 |
+
image = image[0]
|
772 |
+
|
773 |
+
if height is None:
|
774 |
+
if isinstance(image, PIL.Image.Image):
|
775 |
+
height = image.height
|
776 |
+
elif isinstance(image, torch.Tensor):
|
777 |
+
height = image.shape[2]
|
778 |
+
|
779 |
+
height = (height // 8) * 8 # round down to nearest multiple of 8
|
780 |
+
|
781 |
+
if width is None:
|
782 |
+
if isinstance(image, PIL.Image.Image):
|
783 |
+
width = image.width
|
784 |
+
elif isinstance(image, torch.Tensor):
|
785 |
+
width = image.shape[3]
|
786 |
+
|
787 |
+
width = (width // 8) * 8 # round down to nearest multiple of 8
|
788 |
+
|
789 |
+
return height, width
|
790 |
+
|
791 |
+
# override DiffusionPipeline
|
792 |
+
def save_pretrained(
|
793 |
+
self,
|
794 |
+
save_directory: Union[str, os.PathLike],
|
795 |
+
safe_serialization: bool = False,
|
796 |
+
variant: Optional[str] = None,
|
797 |
+
):
|
798 |
+
if isinstance(self.controlnet, ControlNetModel):
|
799 |
+
super().save_pretrained(save_directory, safe_serialization, variant)
|
800 |
+
else:
|
801 |
+
raise NotImplementedError("Currently, the `save_pretrained()` is not implemented for Multi-ControlNet.")
|
802 |
+
|
803 |
+
@torch.no_grad()
|
804 |
+
@replace_example_docstring(EXAMPLE_DOC_STRING)
|
805 |
+
def __call__(
|
806 |
+
self,
|
807 |
+
prompt: Union[str, List[str]] = None,
|
808 |
+
image: Union[torch.FloatTensor, PIL.Image.Image, List[torch.FloatTensor], List[PIL.Image.Image]] = None,
|
809 |
+
control_image: Union[
|
810 |
+
torch.FloatTensor, PIL.Image.Image, List[torch.FloatTensor], List[PIL.Image.Image]
|
811 |
+
] = None,
|
812 |
+
height: Optional[int] = None,
|
813 |
+
width: Optional[int] = None,
|
814 |
+
strength: float = 0.8,
|
815 |
+
num_inference_steps: int = 50,
|
816 |
+
guidance_scale: float = 7.5,
|
817 |
+
negative_prompt: Optional[Union[str, List[str]]] = None,
|
818 |
+
num_images_per_prompt: Optional[int] = 1,
|
819 |
+
eta: float = 0.0,
|
820 |
+
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
821 |
+
latents: Optional[torch.FloatTensor] = None,
|
822 |
+
prompt_embeds: Optional[torch.FloatTensor] = None,
|
823 |
+
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
|
824 |
+
output_type: Optional[str] = "pil",
|
825 |
+
return_dict: bool = True,
|
826 |
+
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
|
827 |
+
callback_steps: int = 1,
|
828 |
+
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
829 |
+
controlnet_conditioning_scale: Union[float, List[float]] = 0.8,
|
830 |
+
guess_mode: bool = False,
|
831 |
+
):
|
832 |
+
r"""
|
833 |
+
Function invoked when calling the pipeline for generation.
|
834 |
+
|
835 |
+
Args:
|
836 |
+
prompt (`str` or `List[str]`, *optional*):
|
837 |
+
The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
|
838 |
+
instead.
|
839 |
+
image (`torch.FloatTensor`, `PIL.Image.Image`, `List[torch.FloatTensor]`, `List[PIL.Image.Image]`,
|
840 |
+
`List[List[torch.FloatTensor]]`, or `List[List[PIL.Image.Image]]`):
|
841 |
+
The ControlNet input condition. ControlNet uses this input condition to generate guidance to Unet. If
|
842 |
+
the type is specified as `Torch.FloatTensor`, it is passed to ControlNet as is. `PIL.Image.Image` can
|
843 |
+
also be accepted as an image. The dimensions of the output image defaults to `image`'s dimensions. If
|
844 |
+
height and/or width are passed, `image` is resized according to them. If multiple ControlNets are
|
845 |
+
specified in init, images must be passed as a list such that each element of the list can be correctly
|
846 |
+
batched for input to a single controlnet.
|
847 |
+
height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
|
848 |
+
The height in pixels of the generated image.
|
849 |
+
width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
|
850 |
+
The width in pixels of the generated image.
|
851 |
+
num_inference_steps (`int`, *optional*, defaults to 50):
|
852 |
+
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
|
853 |
+
expense of slower inference.
|
854 |
+
guidance_scale (`float`, *optional*, defaults to 7.5):
|
855 |
+
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
|
856 |
+
`guidance_scale` is defined as `w` of equation 2. of [Imagen
|
857 |
+
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
|
858 |
+
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
|
859 |
+
usually at the expense of lower image quality.
|
860 |
+
negative_prompt (`str` or `List[str]`, *optional*):
|
861 |
+
The prompt or prompts not to guide the image generation. If not defined, one has to pass
|
862 |
+
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
|
863 |
+
less than `1`).
|
864 |
+
num_images_per_prompt (`int`, *optional*, defaults to 1):
|
865 |
+
The number of images to generate per prompt.
|
866 |
+
eta (`float`, *optional*, defaults to 0.0):
|
867 |
+
Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to
|
868 |
+
[`schedulers.DDIMScheduler`], will be ignored for others.
|
869 |
+
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
|
870 |
+
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
|
871 |
+
to make generation deterministic.
|
872 |
+
latents (`torch.FloatTensor`, *optional*):
|
873 |
+
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
|
874 |
+
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
|
875 |
+
tensor will ge generated by sampling using the supplied random `generator`.
|
876 |
+
prompt_embeds (`torch.FloatTensor`, *optional*):
|
877 |
+
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
|
878 |
+
provided, text embeddings will be generated from `prompt` input argument.
|
879 |
+
negative_prompt_embeds (`torch.FloatTensor`, *optional*):
|
880 |
+
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
881 |
+
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
|
882 |
+
argument.
|
883 |
+
output_type (`str`, *optional*, defaults to `"pil"`):
|
884 |
+
The output format of the generate image. Choose between
|
885 |
+
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
|
886 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
887 |
+
Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
|
888 |
+
plain tuple.
|
889 |
+
callback (`Callable`, *optional*):
|
890 |
+
A function that will be called every `callback_steps` steps during inference. The function will be
|
891 |
+
called with the following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`.
|
892 |
+
callback_steps (`int`, *optional*, defaults to 1):
|
893 |
+
The frequency at which the `callback` function will be called. If not specified, the callback will be
|
894 |
+
called at every step.
|
895 |
+
cross_attention_kwargs (`dict`, *optional*):
|
896 |
+
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
|
897 |
+
`self.processor` in
|
898 |
+
[diffusers.cross_attention](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/cross_attention.py).
|
899 |
+
controlnet_conditioning_scale (`float` or `List[float]`, *optional*, defaults to 1.0):
|
900 |
+
The outputs of the controlnet are multiplied by `controlnet_conditioning_scale` before they are added
|
901 |
+
to the residual in the original unet. If multiple ControlNets are specified in init, you can set the
|
902 |
+
corresponding scale as a list. Note that by default, we use a smaller conditioning scale for inpainting
|
903 |
+
than for [`~StableDiffusionControlNetPipeline.__call__`].
|
904 |
+
guess_mode (`bool`, *optional*, defaults to `False`):
|
905 |
+
In this mode, the ControlNet encoder will try best to recognize the content of the input image even if
|
906 |
+
you remove all prompts. The `guidance_scale` between 3.0 and 5.0 is recommended.
|
907 |
+
|
908 |
+
Examples:
|
909 |
+
|
910 |
+
Returns:
|
911 |
+
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`:
|
912 |
+
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] if `return_dict` is True, otherwise a `tuple.
|
913 |
+
When returning a tuple, the first element is a list with the generated images, and the second element is a
|
914 |
+
list of `bool`s denoting whether the corresponding generated image likely represents "not-safe-for-work"
|
915 |
+
(nsfw) content, according to the `safety_checker`.
|
916 |
+
"""
|
917 |
+
# 0. Default height and width to unet
|
918 |
+
height, width = self._default_height_width(height, width, image)
|
919 |
+
|
920 |
+
# 1. Check inputs. Raise error if not correct
|
921 |
+
self.check_inputs(
|
922 |
+
prompt,
|
923 |
+
control_image,
|
924 |
+
height,
|
925 |
+
width,
|
926 |
+
callback_steps,
|
927 |
+
negative_prompt,
|
928 |
+
prompt_embeds,
|
929 |
+
negative_prompt_embeds,
|
930 |
+
controlnet_conditioning_scale,
|
931 |
+
)
|
932 |
+
|
933 |
+
# 2. Define call parameters
|
934 |
+
if prompt is not None and isinstance(prompt, str):
|
935 |
+
batch_size = 1
|
936 |
+
elif prompt is not None and isinstance(prompt, list):
|
937 |
+
batch_size = len(prompt)
|
938 |
+
else:
|
939 |
+
batch_size = prompt_embeds.shape[0]
|
940 |
+
|
941 |
+
device = self._execution_device
|
942 |
+
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
|
943 |
+
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
|
944 |
+
# corresponds to doing no classifier free guidance.
|
945 |
+
do_classifier_free_guidance = guidance_scale > 1.0
|
946 |
+
|
947 |
+
controlnet = self.controlnet._orig_mod if is_compiled_module(self.controlnet) else self.controlnet
|
948 |
+
|
949 |
+
if isinstance(controlnet, MultiControlNetModel) and isinstance(controlnet_conditioning_scale, float):
|
950 |
+
controlnet_conditioning_scale = [controlnet_conditioning_scale] * len(controlnet.nets)
|
951 |
+
|
952 |
+
global_pool_conditions = (
|
953 |
+
controlnet.config.global_pool_conditions
|
954 |
+
if isinstance(controlnet, ControlNetModel)
|
955 |
+
else controlnet.nets[0].config.global_pool_conditions
|
956 |
+
)
|
957 |
+
guess_mode = guess_mode or global_pool_conditions
|
958 |
+
|
959 |
+
# 3. Encode input prompt
|
960 |
+
prompt_embeds = self._encode_prompt(
|
961 |
+
prompt,
|
962 |
+
device,
|
963 |
+
num_images_per_prompt,
|
964 |
+
do_classifier_free_guidance,
|
965 |
+
negative_prompt,
|
966 |
+
prompt_embeds=prompt_embeds,
|
967 |
+
negative_prompt_embeds=negative_prompt_embeds,
|
968 |
+
)
|
969 |
+
# 4. Prepare image, and controlnet_conditioning_image
|
970 |
+
image = prepare_image(image)
|
971 |
+
|
972 |
+
# 5. Prepare image
|
973 |
+
if isinstance(controlnet, ControlNetModel):
|
974 |
+
control_image = self.prepare_control_image(
|
975 |
+
image=control_image,
|
976 |
+
width=width,
|
977 |
+
height=height,
|
978 |
+
batch_size=batch_size * num_images_per_prompt,
|
979 |
+
num_images_per_prompt=num_images_per_prompt,
|
980 |
+
device=device,
|
981 |
+
dtype=controlnet.dtype,
|
982 |
+
do_classifier_free_guidance=do_classifier_free_guidance,
|
983 |
+
guess_mode=guess_mode,
|
984 |
+
)
|
985 |
+
elif isinstance(controlnet, MultiControlNetModel):
|
986 |
+
control_images = []
|
987 |
+
|
988 |
+
for control_image_ in control_image:
|
989 |
+
control_image_ = self.prepare_control_image(
|
990 |
+
image=control_image_,
|
991 |
+
width=width,
|
992 |
+
height=height,
|
993 |
+
batch_size=batch_size * num_images_per_prompt,
|
994 |
+
num_images_per_prompt=num_images_per_prompt,
|
995 |
+
device=device,
|
996 |
+
dtype=controlnet.dtype,
|
997 |
+
do_classifier_free_guidance=do_classifier_free_guidance,
|
998 |
+
guess_mode=guess_mode,
|
999 |
+
)
|
1000 |
+
|
1001 |
+
control_images.append(control_image_)
|
1002 |
+
|
1003 |
+
control_image = control_images
|
1004 |
+
else:
|
1005 |
+
assert False
|
1006 |
+
|
1007 |
+
# 5. Prepare timesteps
|
1008 |
+
self.scheduler.set_timesteps(num_inference_steps, device=device)
|
1009 |
+
timesteps, num_inference_steps = self.get_timesteps(num_inference_steps, strength, device)
|
1010 |
+
latent_timestep = timesteps[:1].repeat(batch_size * num_images_per_prompt)
|
1011 |
+
|
1012 |
+
# 6. Prepare latent variables
|
1013 |
+
latents = self.prepare_latents(
|
1014 |
+
image,
|
1015 |
+
latent_timestep,
|
1016 |
+
batch_size,
|
1017 |
+
num_images_per_prompt,
|
1018 |
+
prompt_embeds.dtype,
|
1019 |
+
device,
|
1020 |
+
generator,
|
1021 |
+
)
|
1022 |
+
|
1023 |
+
# 7. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
|
1024 |
+
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
|
1025 |
+
|
1026 |
+
# 8. Denoising loop
|
1027 |
+
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
|
1028 |
+
with self.progress_bar(total=num_inference_steps) as progress_bar:
|
1029 |
+
for i, t in enumerate(timesteps):
|
1030 |
+
# expand the latents if we are doing classifier free guidance
|
1031 |
+
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
|
1032 |
+
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
|
1033 |
+
|
1034 |
+
# controlnet(s) inference
|
1035 |
+
if guess_mode and do_classifier_free_guidance:
|
1036 |
+
# Infer ControlNet only for the conditional batch.
|
1037 |
+
control_model_input = latents
|
1038 |
+
control_model_input = self.scheduler.scale_model_input(control_model_input, t)
|
1039 |
+
controlnet_prompt_embeds = prompt_embeds.chunk(2)[1]
|
1040 |
+
else:
|
1041 |
+
control_model_input = latent_model_input
|
1042 |
+
controlnet_prompt_embeds = prompt_embeds
|
1043 |
+
|
1044 |
+
down_block_res_samples, mid_block_res_sample = self.controlnet(
|
1045 |
+
control_model_input,
|
1046 |
+
t,
|
1047 |
+
encoder_hidden_states=controlnet_prompt_embeds,
|
1048 |
+
controlnet_cond=control_image,
|
1049 |
+
conditioning_scale=controlnet_conditioning_scale,
|
1050 |
+
guess_mode=guess_mode,
|
1051 |
+
return_dict=False,
|
1052 |
+
)
|
1053 |
+
|
1054 |
+
if guess_mode and do_classifier_free_guidance:
|
1055 |
+
# Infered ControlNet only for the conditional batch.
|
1056 |
+
# To apply the output of ControlNet to both the unconditional and conditional batches,
|
1057 |
+
# add 0 to the unconditional batch to keep it unchanged.
|
1058 |
+
down_block_res_samples = [torch.cat([torch.zeros_like(d), d]) for d in down_block_res_samples]
|
1059 |
+
mid_block_res_sample = torch.cat([torch.zeros_like(mid_block_res_sample), mid_block_res_sample])
|
1060 |
+
|
1061 |
+
# predict the noise residual
|
1062 |
+
noise_pred = self.unet(
|
1063 |
+
latent_model_input,
|
1064 |
+
t,
|
1065 |
+
encoder_hidden_states=prompt_embeds,
|
1066 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
1067 |
+
down_block_additional_residuals=down_block_res_samples,
|
1068 |
+
mid_block_additional_residual=mid_block_res_sample,
|
1069 |
+
return_dict=False,
|
1070 |
+
)[0]
|
1071 |
+
|
1072 |
+
# perform guidance
|
1073 |
+
if do_classifier_free_guidance:
|
1074 |
+
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
1075 |
+
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
|
1076 |
+
|
1077 |
+
# compute the previous noisy sample x_t -> x_t-1
|
1078 |
+
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0]
|
1079 |
+
|
1080 |
+
# call the callback, if provided
|
1081 |
+
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
|
1082 |
+
progress_bar.update()
|
1083 |
+
if callback is not None and i % callback_steps == 0:
|
1084 |
+
callback(i, t, latents)
|
1085 |
+
|
1086 |
+
# If we do sequential model offloading, let's offload unet and controlnet
|
1087 |
+
# manually for max memory savings
|
1088 |
+
if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None:
|
1089 |
+
self.unet.to("cpu")
|
1090 |
+
self.controlnet.to("cpu")
|
1091 |
+
torch.cuda.empty_cache()
|
1092 |
+
|
1093 |
+
if not output_type == "latent":
|
1094 |
+
image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0]
|
1095 |
+
image, has_nsfw_concept = self.run_safety_checker(image, device, prompt_embeds.dtype)
|
1096 |
+
else:
|
1097 |
+
image = latents
|
1098 |
+
has_nsfw_concept = None
|
1099 |
+
|
1100 |
+
if has_nsfw_concept is None:
|
1101 |
+
do_denormalize = [True] * image.shape[0]
|
1102 |
+
else:
|
1103 |
+
do_denormalize = [not has_nsfw for has_nsfw in has_nsfw_concept]
|
1104 |
+
|
1105 |
+
image = self.image_processor.postprocess(image, output_type=output_type, do_denormalize=do_denormalize)
|
1106 |
+
|
1107 |
+
# Offload last model to CPU
|
1108 |
+
if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None:
|
1109 |
+
self.final_offload_hook.offload()
|
1110 |
+
|
1111 |
+
if not return_dict:
|
1112 |
+
return (image, has_nsfw_concept)
|
1113 |
+
|
1114 |
+
return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept)
|
pipeline_controlnet_inpaint.py
ADDED
@@ -0,0 +1,1344 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2023 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
# This model implementation is heavily inspired by https://github.com/haofanwang/ControlNet-for-Diffusers/
|
16 |
+
|
17 |
+
import inspect
|
18 |
+
import os
|
19 |
+
import warnings
|
20 |
+
from typing import Any, Callable, Dict, List, Optional, Tuple, Union
|
21 |
+
|
22 |
+
import numpy as np
|
23 |
+
import PIL.Image
|
24 |
+
import torch
|
25 |
+
import torch.nn.functional as F
|
26 |
+
from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer
|
27 |
+
|
28 |
+
from ...image_processor import VaeImageProcessor
|
29 |
+
from ...loaders import TextualInversionLoaderMixin
|
30 |
+
from ...models import AutoencoderKL, ControlNetModel, UNet2DConditionModel
|
31 |
+
from ...schedulers import KarrasDiffusionSchedulers
|
32 |
+
from ...utils import (
|
33 |
+
PIL_INTERPOLATION,
|
34 |
+
is_accelerate_available,
|
35 |
+
is_accelerate_version,
|
36 |
+
is_compiled_module,
|
37 |
+
logging,
|
38 |
+
randn_tensor,
|
39 |
+
replace_example_docstring,
|
40 |
+
)
|
41 |
+
from ..pipeline_utils import DiffusionPipeline
|
42 |
+
from ..stable_diffusion import StableDiffusionPipelineOutput
|
43 |
+
from ..stable_diffusion.safety_checker import StableDiffusionSafetyChecker
|
44 |
+
from .multicontrolnet import MultiControlNetModel
|
45 |
+
|
46 |
+
|
47 |
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
48 |
+
|
49 |
+
|
50 |
+
EXAMPLE_DOC_STRING = """
|
51 |
+
Examples:
|
52 |
+
```py
|
53 |
+
>>> # !pip install transformers accelerate
|
54 |
+
>>> from diffusers import StableDiffusionControlNetInpaintPipeline, ControlNetModel, DDIMScheduler
|
55 |
+
>>> from diffusers.utils import load_image
|
56 |
+
>>> import numpy as np
|
57 |
+
>>> import torch
|
58 |
+
|
59 |
+
>>> init_image = load_image(
|
60 |
+
... "https://huggingface.co/datasets/diffusers/test-arrays/resolve/main/stable_diffusion_inpaint/boy.png"
|
61 |
+
... )
|
62 |
+
>>> init_image = init_image.resize((512, 512))
|
63 |
+
|
64 |
+
>>> generator = torch.Generator(device="cpu").manual_seed(1)
|
65 |
+
|
66 |
+
>>> mask_image = load_image(
|
67 |
+
... "https://huggingface.co/datasets/diffusers/test-arrays/resolve/main/stable_diffusion_inpaint/boy_mask.png"
|
68 |
+
... )
|
69 |
+
>>> mask_image = mask_image.resize((512, 512))
|
70 |
+
|
71 |
+
|
72 |
+
>>> def make_inpaint_condition(image, image_mask):
|
73 |
+
... image = np.array(image.convert("RGB")).astype(np.float32) / 255.0
|
74 |
+
... image_mask = np.array(image_mask.convert("L")).astype(np.float32) / 255.0
|
75 |
+
|
76 |
+
... assert image.shape[0:1] == image_mask.shape[0:1], "image and image_mask must have the same image size"
|
77 |
+
... image[image_mask > 0.5] = -1.0 # set as masked pixel
|
78 |
+
... image = np.expand_dims(image, 0).transpose(0, 3, 1, 2)
|
79 |
+
... image = torch.from_numpy(image)
|
80 |
+
... return image
|
81 |
+
|
82 |
+
|
83 |
+
>>> control_image = make_inpaint_condition(init_image, mask_image)
|
84 |
+
|
85 |
+
>>> controlnet = ControlNetModel.from_pretrained(
|
86 |
+
... "lllyasviel/control_v11p_sd15_inpaint", torch_dtype=torch.float16
|
87 |
+
... )
|
88 |
+
>>> pipe = StableDiffusionControlNetInpaintPipeline.from_pretrained(
|
89 |
+
... "runwayml/stable-diffusion-v1-5", controlnet=controlnet, torch_dtype=torch.float16
|
90 |
+
... )
|
91 |
+
|
92 |
+
>>> pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config)
|
93 |
+
>>> pipe.enable_model_cpu_offload()
|
94 |
+
|
95 |
+
>>> # generate image
|
96 |
+
>>> image = pipe(
|
97 |
+
... "a handsome man with ray-ban sunglasses",
|
98 |
+
... num_inference_steps=20,
|
99 |
+
... generator=generator,
|
100 |
+
... eta=1.0,
|
101 |
+
... image=init_image,
|
102 |
+
... mask_image=mask_image,
|
103 |
+
... control_image=control_image,
|
104 |
+
... ).images[0]
|
105 |
+
```
|
106 |
+
"""
|
107 |
+
|
108 |
+
|
109 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_inpaint.prepare_mask_and_masked_image
|
110 |
+
def prepare_mask_and_masked_image(image, mask, height, width, return_image=False):
|
111 |
+
"""
|
112 |
+
Prepares a pair (image, mask) to be consumed by the Stable Diffusion pipeline. This means that those inputs will be
|
113 |
+
converted to ``torch.Tensor`` with shapes ``batch x channels x height x width`` where ``channels`` is ``3`` for the
|
114 |
+
``image`` and ``1`` for the ``mask``.
|
115 |
+
|
116 |
+
The ``image`` will be converted to ``torch.float32`` and normalized to be in ``[-1, 1]``. The ``mask`` will be
|
117 |
+
binarized (``mask > 0.5``) and cast to ``torch.float32`` too.
|
118 |
+
|
119 |
+
Args:
|
120 |
+
image (Union[np.array, PIL.Image, torch.Tensor]): The image to inpaint.
|
121 |
+
It can be a ``PIL.Image``, or a ``height x width x 3`` ``np.array`` or a ``channels x height x width``
|
122 |
+
``torch.Tensor`` or a ``batch x channels x height x width`` ``torch.Tensor``.
|
123 |
+
mask (_type_): The mask to apply to the image, i.e. regions to inpaint.
|
124 |
+
It can be a ``PIL.Image``, or a ``height x width`` ``np.array`` or a ``1 x height x width``
|
125 |
+
``torch.Tensor`` or a ``batch x 1 x height x width`` ``torch.Tensor``.
|
126 |
+
|
127 |
+
|
128 |
+
Raises:
|
129 |
+
ValueError: ``torch.Tensor`` images should be in the ``[-1, 1]`` range. ValueError: ``torch.Tensor`` mask
|
130 |
+
should be in the ``[0, 1]`` range. ValueError: ``mask`` and ``image`` should have the same spatial dimensions.
|
131 |
+
TypeError: ``mask`` is a ``torch.Tensor`` but ``image`` is not
|
132 |
+
(ot the other way around).
|
133 |
+
|
134 |
+
Returns:
|
135 |
+
tuple[torch.Tensor]: The pair (mask, masked_image) as ``torch.Tensor`` with 4
|
136 |
+
dimensions: ``batch x channels x height x width``.
|
137 |
+
"""
|
138 |
+
|
139 |
+
if image is None:
|
140 |
+
raise ValueError("`image` input cannot be undefined.")
|
141 |
+
|
142 |
+
if mask is None:
|
143 |
+
raise ValueError("`mask_image` input cannot be undefined.")
|
144 |
+
|
145 |
+
if isinstance(image, torch.Tensor):
|
146 |
+
if not isinstance(mask, torch.Tensor):
|
147 |
+
raise TypeError(f"`image` is a torch.Tensor but `mask` (type: {type(mask)} is not")
|
148 |
+
|
149 |
+
# Batch single image
|
150 |
+
if image.ndim == 3:
|
151 |
+
assert image.shape[0] == 3, "Image outside a batch should be of shape (3, H, W)"
|
152 |
+
image = image.unsqueeze(0)
|
153 |
+
|
154 |
+
# Batch and add channel dim for single mask
|
155 |
+
if mask.ndim == 2:
|
156 |
+
mask = mask.unsqueeze(0).unsqueeze(0)
|
157 |
+
|
158 |
+
# Batch single mask or add channel dim
|
159 |
+
if mask.ndim == 3:
|
160 |
+
# Single batched mask, no channel dim or single mask not batched but channel dim
|
161 |
+
if mask.shape[0] == 1:
|
162 |
+
mask = mask.unsqueeze(0)
|
163 |
+
|
164 |
+
# Batched masks no channel dim
|
165 |
+
else:
|
166 |
+
mask = mask.unsqueeze(1)
|
167 |
+
|
168 |
+
assert image.ndim == 4 and mask.ndim == 4, "Image and Mask must have 4 dimensions"
|
169 |
+
assert image.shape[-2:] == mask.shape[-2:], "Image and Mask must have the same spatial dimensions"
|
170 |
+
assert image.shape[0] == mask.shape[0], "Image and Mask must have the same batch size"
|
171 |
+
|
172 |
+
# Check image is in [-1, 1]
|
173 |
+
if image.min() < -1 or image.max() > 1:
|
174 |
+
raise ValueError("Image should be in [-1, 1] range")
|
175 |
+
|
176 |
+
# Check mask is in [0, 1]
|
177 |
+
if mask.min() < 0 or mask.max() > 1:
|
178 |
+
raise ValueError("Mask should be in [0, 1] range")
|
179 |
+
|
180 |
+
# Binarize mask
|
181 |
+
mask[mask < 0.5] = 0
|
182 |
+
mask[mask >= 0.5] = 1
|
183 |
+
|
184 |
+
# Image as float32
|
185 |
+
image = image.to(dtype=torch.float32)
|
186 |
+
elif isinstance(mask, torch.Tensor):
|
187 |
+
raise TypeError(f"`mask` is a torch.Tensor but `image` (type: {type(image)} is not")
|
188 |
+
else:
|
189 |
+
# preprocess image
|
190 |
+
if isinstance(image, (PIL.Image.Image, np.ndarray)):
|
191 |
+
image = [image]
|
192 |
+
if isinstance(image, list) and isinstance(image[0], PIL.Image.Image):
|
193 |
+
# resize all images w.r.t passed height an width
|
194 |
+
image = [i.resize((width, height), resample=PIL.Image.LANCZOS) for i in image]
|
195 |
+
image = [np.array(i.convert("RGB"))[None, :] for i in image]
|
196 |
+
image = np.concatenate(image, axis=0)
|
197 |
+
elif isinstance(image, list) and isinstance(image[0], np.ndarray):
|
198 |
+
image = np.concatenate([i[None, :] for i in image], axis=0)
|
199 |
+
|
200 |
+
image = image.transpose(0, 3, 1, 2)
|
201 |
+
image = torch.from_numpy(image).to(dtype=torch.float32) / 127.5 - 1.0
|
202 |
+
|
203 |
+
# preprocess mask
|
204 |
+
if isinstance(mask, (PIL.Image.Image, np.ndarray)):
|
205 |
+
mask = [mask]
|
206 |
+
|
207 |
+
if isinstance(mask, list) and isinstance(mask[0], PIL.Image.Image):
|
208 |
+
mask = [i.resize((width, height), resample=PIL.Image.LANCZOS) for i in mask]
|
209 |
+
mask = np.concatenate([np.array(m.convert("L"))[None, None, :] for m in mask], axis=0)
|
210 |
+
mask = mask.astype(np.float32) / 255.0
|
211 |
+
elif isinstance(mask, list) and isinstance(mask[0], np.ndarray):
|
212 |
+
mask = np.concatenate([m[None, None, :] for m in mask], axis=0)
|
213 |
+
|
214 |
+
mask[mask < 0.5] = 0
|
215 |
+
mask[mask >= 0.5] = 1
|
216 |
+
mask = torch.from_numpy(mask)
|
217 |
+
|
218 |
+
masked_image = image * (mask < 0.5)
|
219 |
+
|
220 |
+
# n.b. ensure backwards compatibility as old function does not return image
|
221 |
+
if return_image:
|
222 |
+
return mask, masked_image, image
|
223 |
+
|
224 |
+
return mask, masked_image
|
225 |
+
|
226 |
+
|
227 |
+
class StableDiffusionControlNetInpaintPipeline(DiffusionPipeline, TextualInversionLoaderMixin):
|
228 |
+
r"""
|
229 |
+
Pipeline for text-to-image generation using Stable Diffusion with ControlNet guidance.
|
230 |
+
|
231 |
+
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the
|
232 |
+
library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)
|
233 |
+
|
234 |
+
In addition the pipeline inherits the following loading methods:
|
235 |
+
- *Textual-Inversion*: [`loaders.TextualInversionLoaderMixin.load_textual_inversion`]
|
236 |
+
|
237 |
+
<Tip>
|
238 |
+
|
239 |
+
This pipeline can be used both with checkpoints that have been specifically fine-tuned for inpainting, such as
|
240 |
+
[runwayml/stable-diffusion-inpainting](https://huggingface.co/runwayml/stable-diffusion-inpainting)
|
241 |
+
as well as default text-to-image stable diffusion checkpoints, such as
|
242 |
+
[runwayml/stable-diffusion-v1-5](https://huggingface.co/runwayml/stable-diffusion-v1-5).
|
243 |
+
Default text-to-image stable diffusion checkpoints might be preferable for controlnets that have been fine-tuned on
|
244 |
+
those, such as [lllyasviel/control_v11p_sd15_inpaint](https://huggingface.co/lllyasviel/control_v11p_sd15_inpaint).
|
245 |
+
|
246 |
+
</Tip>
|
247 |
+
|
248 |
+
Args:
|
249 |
+
vae ([`AutoencoderKL`]):
|
250 |
+
Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
|
251 |
+
text_encoder ([`CLIPTextModel`]):
|
252 |
+
Frozen text-encoder. Stable Diffusion uses the text portion of
|
253 |
+
[CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), specifically
|
254 |
+
the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant.
|
255 |
+
tokenizer (`CLIPTokenizer`):
|
256 |
+
Tokenizer of class
|
257 |
+
[CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer).
|
258 |
+
unet ([`UNet2DConditionModel`]): Conditional U-Net architecture to denoise the encoded image latents.
|
259 |
+
controlnet ([`ControlNetModel`] or `List[ControlNetModel]`):
|
260 |
+
Provides additional conditioning to the unet during the denoising process. If you set multiple ControlNets
|
261 |
+
as a list, the outputs from each ControlNet are added together to create one combined additional
|
262 |
+
conditioning.
|
263 |
+
scheduler ([`SchedulerMixin`]):
|
264 |
+
A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of
|
265 |
+
[`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
|
266 |
+
safety_checker ([`StableDiffusionSafetyChecker`]):
|
267 |
+
Classification module that estimates whether generated images could be considered offensive or harmful.
|
268 |
+
Please, refer to the [model card](https://huggingface.co/runwayml/stable-diffusion-v1-5) for details.
|
269 |
+
feature_extractor ([`CLIPImageProcessor`]):
|
270 |
+
Model that extracts features from generated images to be used as inputs for the `safety_checker`.
|
271 |
+
"""
|
272 |
+
_optional_components = ["safety_checker", "feature_extractor"]
|
273 |
+
|
274 |
+
def __init__(
|
275 |
+
self,
|
276 |
+
vae: AutoencoderKL,
|
277 |
+
text_encoder: CLIPTextModel,
|
278 |
+
tokenizer: CLIPTokenizer,
|
279 |
+
unet: UNet2DConditionModel,
|
280 |
+
controlnet: Union[ControlNetModel, List[ControlNetModel], Tuple[ControlNetModel], MultiControlNetModel],
|
281 |
+
scheduler: KarrasDiffusionSchedulers,
|
282 |
+
safety_checker: StableDiffusionSafetyChecker,
|
283 |
+
feature_extractor: CLIPImageProcessor,
|
284 |
+
requires_safety_checker: bool = True,
|
285 |
+
):
|
286 |
+
super().__init__()
|
287 |
+
|
288 |
+
if safety_checker is None and requires_safety_checker:
|
289 |
+
logger.warning(
|
290 |
+
f"You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure"
|
291 |
+
" that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered"
|
292 |
+
" results in services or applications open to the public. Both the diffusers team and Hugging Face"
|
293 |
+
" strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling"
|
294 |
+
" it only for use-cases that involve analyzing network behavior or auditing its results. For more"
|
295 |
+
" information, please have a look at https://github.com/huggingface/diffusers/pull/254 ."
|
296 |
+
)
|
297 |
+
|
298 |
+
if safety_checker is not None and feature_extractor is None:
|
299 |
+
raise ValueError(
|
300 |
+
"Make sure to define a feature extractor when loading {self.__class__} if you want to use the safety"
|
301 |
+
" checker. If you do not want to use the safety checker, you can pass `'safety_checker=None'` instead."
|
302 |
+
)
|
303 |
+
|
304 |
+
if isinstance(controlnet, (list, tuple)):
|
305 |
+
controlnet = MultiControlNetModel(controlnet)
|
306 |
+
|
307 |
+
self.register_modules(
|
308 |
+
vae=vae,
|
309 |
+
text_encoder=text_encoder,
|
310 |
+
tokenizer=tokenizer,
|
311 |
+
unet=unet,
|
312 |
+
controlnet=controlnet,
|
313 |
+
scheduler=scheduler,
|
314 |
+
safety_checker=safety_checker,
|
315 |
+
feature_extractor=feature_extractor,
|
316 |
+
)
|
317 |
+
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
|
318 |
+
self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor)
|
319 |
+
self.register_to_config(requires_safety_checker=requires_safety_checker)
|
320 |
+
|
321 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.enable_vae_slicing
|
322 |
+
def enable_vae_slicing(self):
|
323 |
+
r"""
|
324 |
+
Enable sliced VAE decoding.
|
325 |
+
|
326 |
+
When this option is enabled, the VAE will split the input tensor in slices to compute decoding in several
|
327 |
+
steps. This is useful to save some memory and allow larger batch sizes.
|
328 |
+
"""
|
329 |
+
self.vae.enable_slicing()
|
330 |
+
|
331 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.disable_vae_slicing
|
332 |
+
def disable_vae_slicing(self):
|
333 |
+
r"""
|
334 |
+
Disable sliced VAE decoding. If `enable_vae_slicing` was previously invoked, this method will go back to
|
335 |
+
computing decoding in one step.
|
336 |
+
"""
|
337 |
+
self.vae.disable_slicing()
|
338 |
+
|
339 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.enable_vae_tiling
|
340 |
+
def enable_vae_tiling(self):
|
341 |
+
r"""
|
342 |
+
Enable tiled VAE decoding.
|
343 |
+
|
344 |
+
When this option is enabled, the VAE will split the input tensor into tiles to compute decoding and encoding in
|
345 |
+
several steps. This is useful to save a large amount of memory and to allow the processing of larger images.
|
346 |
+
"""
|
347 |
+
self.vae.enable_tiling()
|
348 |
+
|
349 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.disable_vae_tiling
|
350 |
+
def disable_vae_tiling(self):
|
351 |
+
r"""
|
352 |
+
Disable tiled VAE decoding. If `enable_vae_tiling` was previously invoked, this method will go back to
|
353 |
+
computing decoding in one step.
|
354 |
+
"""
|
355 |
+
self.vae.disable_tiling()
|
356 |
+
|
357 |
+
def enable_sequential_cpu_offload(self, gpu_id=0):
|
358 |
+
r"""
|
359 |
+
Offloads all models to CPU using accelerate, significantly reducing memory usage. When called, unet,
|
360 |
+
text_encoder, vae, controlnet, and safety checker have their state dicts saved to CPU and then are moved to a
|
361 |
+
`torch.device('meta') and loaded to GPU only when their specific submodule has its `forward` method called.
|
362 |
+
Note that offloading happens on a submodule basis. Memory savings are higher than with
|
363 |
+
`enable_model_cpu_offload`, but performance is lower.
|
364 |
+
"""
|
365 |
+
if is_accelerate_available():
|
366 |
+
from accelerate import cpu_offload
|
367 |
+
else:
|
368 |
+
raise ImportError("Please install accelerate via `pip install accelerate`")
|
369 |
+
|
370 |
+
device = torch.device(f"cuda:{gpu_id}")
|
371 |
+
|
372 |
+
for cpu_offloaded_model in [self.unet, self.text_encoder, self.vae, self.controlnet]:
|
373 |
+
cpu_offload(cpu_offloaded_model, device)
|
374 |
+
|
375 |
+
if self.safety_checker is not None:
|
376 |
+
cpu_offload(self.safety_checker, execution_device=device, offload_buffers=True)
|
377 |
+
|
378 |
+
def enable_model_cpu_offload(self, gpu_id=0):
|
379 |
+
r"""
|
380 |
+
Offloads all models to CPU using accelerate, reducing memory usage with a low impact on performance. Compared
|
381 |
+
to `enable_sequential_cpu_offload`, this method moves one whole model at a time to the GPU when its `forward`
|
382 |
+
method is called, and the model remains in GPU until the next model runs. Memory savings are lower than with
|
383 |
+
`enable_sequential_cpu_offload`, but performance is much better due to the iterative execution of the `unet`.
|
384 |
+
"""
|
385 |
+
if is_accelerate_available() and is_accelerate_version(">=", "0.17.0.dev0"):
|
386 |
+
from accelerate import cpu_offload_with_hook
|
387 |
+
else:
|
388 |
+
raise ImportError("`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.")
|
389 |
+
|
390 |
+
device = torch.device(f"cuda:{gpu_id}")
|
391 |
+
|
392 |
+
hook = None
|
393 |
+
for cpu_offloaded_model in [self.text_encoder, self.unet, self.vae]:
|
394 |
+
_, hook = cpu_offload_with_hook(cpu_offloaded_model, device, prev_module_hook=hook)
|
395 |
+
|
396 |
+
if self.safety_checker is not None:
|
397 |
+
# the safety checker can offload the vae again
|
398 |
+
_, hook = cpu_offload_with_hook(self.safety_checker, device, prev_module_hook=hook)
|
399 |
+
|
400 |
+
# control net hook has be manually offloaded as it alternates with unet
|
401 |
+
cpu_offload_with_hook(self.controlnet, device)
|
402 |
+
|
403 |
+
# We'll offload the last model manually.
|
404 |
+
self.final_offload_hook = hook
|
405 |
+
|
406 |
+
@property
|
407 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device
|
408 |
+
def _execution_device(self):
|
409 |
+
r"""
|
410 |
+
Returns the device on which the pipeline's models will be executed. After calling
|
411 |
+
`pipeline.enable_sequential_cpu_offload()` the execution device can only be inferred from Accelerate's module
|
412 |
+
hooks.
|
413 |
+
"""
|
414 |
+
if not hasattr(self.unet, "_hf_hook"):
|
415 |
+
return self.device
|
416 |
+
for module in self.unet.modules():
|
417 |
+
if (
|
418 |
+
hasattr(module, "_hf_hook")
|
419 |
+
and hasattr(module._hf_hook, "execution_device")
|
420 |
+
and module._hf_hook.execution_device is not None
|
421 |
+
):
|
422 |
+
return torch.device(module._hf_hook.execution_device)
|
423 |
+
return self.device
|
424 |
+
|
425 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._encode_prompt
|
426 |
+
def _encode_prompt(
|
427 |
+
self,
|
428 |
+
prompt,
|
429 |
+
device,
|
430 |
+
num_images_per_prompt,
|
431 |
+
do_classifier_free_guidance,
|
432 |
+
negative_prompt=None,
|
433 |
+
prompt_embeds: Optional[torch.FloatTensor] = None,
|
434 |
+
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
|
435 |
+
):
|
436 |
+
r"""
|
437 |
+
Encodes the prompt into text encoder hidden states.
|
438 |
+
|
439 |
+
Args:
|
440 |
+
prompt (`str` or `List[str]`, *optional*):
|
441 |
+
prompt to be encoded
|
442 |
+
device: (`torch.device`):
|
443 |
+
torch device
|
444 |
+
num_images_per_prompt (`int`):
|
445 |
+
number of images that should be generated per prompt
|
446 |
+
do_classifier_free_guidance (`bool`):
|
447 |
+
whether to use classifier free guidance or not
|
448 |
+
negative_prompt (`str` or `List[str]`, *optional*):
|
449 |
+
The prompt or prompts not to guide the image generation. If not defined, one has to pass
|
450 |
+
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
|
451 |
+
less than `1`).
|
452 |
+
prompt_embeds (`torch.FloatTensor`, *optional*):
|
453 |
+
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
|
454 |
+
provided, text embeddings will be generated from `prompt` input argument.
|
455 |
+
negative_prompt_embeds (`torch.FloatTensor`, *optional*):
|
456 |
+
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
457 |
+
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
|
458 |
+
argument.
|
459 |
+
"""
|
460 |
+
if prompt is not None and isinstance(prompt, str):
|
461 |
+
batch_size = 1
|
462 |
+
elif prompt is not None and isinstance(prompt, list):
|
463 |
+
batch_size = len(prompt)
|
464 |
+
else:
|
465 |
+
batch_size = prompt_embeds.shape[0]
|
466 |
+
|
467 |
+
if prompt_embeds is None:
|
468 |
+
# textual inversion: procecss multi-vector tokens if necessary
|
469 |
+
if isinstance(self, TextualInversionLoaderMixin):
|
470 |
+
prompt = self.maybe_convert_prompt(prompt, self.tokenizer)
|
471 |
+
|
472 |
+
text_inputs = self.tokenizer(
|
473 |
+
prompt,
|
474 |
+
padding="max_length",
|
475 |
+
max_length=self.tokenizer.model_max_length,
|
476 |
+
truncation=True,
|
477 |
+
return_tensors="pt",
|
478 |
+
)
|
479 |
+
text_input_ids = text_inputs.input_ids
|
480 |
+
untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids
|
481 |
+
|
482 |
+
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(
|
483 |
+
text_input_ids, untruncated_ids
|
484 |
+
):
|
485 |
+
removed_text = self.tokenizer.batch_decode(
|
486 |
+
untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1]
|
487 |
+
)
|
488 |
+
logger.warning(
|
489 |
+
"The following part of your input was truncated because CLIP can only handle sequences up to"
|
490 |
+
f" {self.tokenizer.model_max_length} tokens: {removed_text}"
|
491 |
+
)
|
492 |
+
|
493 |
+
if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask:
|
494 |
+
attention_mask = text_inputs.attention_mask.to(device)
|
495 |
+
else:
|
496 |
+
attention_mask = None
|
497 |
+
|
498 |
+
prompt_embeds = self.text_encoder(
|
499 |
+
text_input_ids.to(device),
|
500 |
+
attention_mask=attention_mask,
|
501 |
+
)
|
502 |
+
prompt_embeds = prompt_embeds[0]
|
503 |
+
|
504 |
+
prompt_embeds = prompt_embeds.to(dtype=self.text_encoder.dtype, device=device)
|
505 |
+
|
506 |
+
bs_embed, seq_len, _ = prompt_embeds.shape
|
507 |
+
# duplicate text embeddings for each generation per prompt, using mps friendly method
|
508 |
+
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
|
509 |
+
prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1)
|
510 |
+
|
511 |
+
# get unconditional embeddings for classifier free guidance
|
512 |
+
if do_classifier_free_guidance and negative_prompt_embeds is None:
|
513 |
+
uncond_tokens: List[str]
|
514 |
+
if negative_prompt is None:
|
515 |
+
uncond_tokens = [""] * batch_size
|
516 |
+
elif prompt is not None and type(prompt) is not type(negative_prompt):
|
517 |
+
raise TypeError(
|
518 |
+
f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
|
519 |
+
f" {type(prompt)}."
|
520 |
+
)
|
521 |
+
elif isinstance(negative_prompt, str):
|
522 |
+
uncond_tokens = [negative_prompt]
|
523 |
+
elif batch_size != len(negative_prompt):
|
524 |
+
raise ValueError(
|
525 |
+
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
|
526 |
+
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
|
527 |
+
" the batch size of `prompt`."
|
528 |
+
)
|
529 |
+
else:
|
530 |
+
uncond_tokens = negative_prompt
|
531 |
+
|
532 |
+
# textual inversion: procecss multi-vector tokens if necessary
|
533 |
+
if isinstance(self, TextualInversionLoaderMixin):
|
534 |
+
uncond_tokens = self.maybe_convert_prompt(uncond_tokens, self.tokenizer)
|
535 |
+
|
536 |
+
max_length = prompt_embeds.shape[1]
|
537 |
+
uncond_input = self.tokenizer(
|
538 |
+
uncond_tokens,
|
539 |
+
padding="max_length",
|
540 |
+
max_length=max_length,
|
541 |
+
truncation=True,
|
542 |
+
return_tensors="pt",
|
543 |
+
)
|
544 |
+
|
545 |
+
if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask:
|
546 |
+
attention_mask = uncond_input.attention_mask.to(device)
|
547 |
+
else:
|
548 |
+
attention_mask = None
|
549 |
+
|
550 |
+
negative_prompt_embeds = self.text_encoder(
|
551 |
+
uncond_input.input_ids.to(device),
|
552 |
+
attention_mask=attention_mask,
|
553 |
+
)
|
554 |
+
negative_prompt_embeds = negative_prompt_embeds[0]
|
555 |
+
|
556 |
+
if do_classifier_free_guidance:
|
557 |
+
# duplicate unconditional embeddings for each generation per prompt, using mps friendly method
|
558 |
+
seq_len = negative_prompt_embeds.shape[1]
|
559 |
+
|
560 |
+
negative_prompt_embeds = negative_prompt_embeds.to(dtype=self.text_encoder.dtype, device=device)
|
561 |
+
|
562 |
+
negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1)
|
563 |
+
negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
|
564 |
+
|
565 |
+
# For classifier free guidance, we need to do two forward passes.
|
566 |
+
# Here we concatenate the unconditional and text embeddings into a single batch
|
567 |
+
# to avoid doing two forward passes
|
568 |
+
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds])
|
569 |
+
|
570 |
+
return prompt_embeds
|
571 |
+
|
572 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.run_safety_checker
|
573 |
+
def run_safety_checker(self, image, device, dtype):
|
574 |
+
if self.safety_checker is None:
|
575 |
+
has_nsfw_concept = None
|
576 |
+
else:
|
577 |
+
if torch.is_tensor(image):
|
578 |
+
feature_extractor_input = self.image_processor.postprocess(image, output_type="pil")
|
579 |
+
else:
|
580 |
+
feature_extractor_input = self.image_processor.numpy_to_pil(image)
|
581 |
+
safety_checker_input = self.feature_extractor(feature_extractor_input, return_tensors="pt").to(device)
|
582 |
+
image, has_nsfw_concept = self.safety_checker(
|
583 |
+
images=image, clip_input=safety_checker_input.pixel_values.to(dtype)
|
584 |
+
)
|
585 |
+
return image, has_nsfw_concept
|
586 |
+
|
587 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.decode_latents
|
588 |
+
def decode_latents(self, latents):
|
589 |
+
warnings.warn(
|
590 |
+
"The decode_latents method is deprecated and will be removed in a future version. Please"
|
591 |
+
" use VaeImageProcessor instead",
|
592 |
+
FutureWarning,
|
593 |
+
)
|
594 |
+
latents = 1 / self.vae.config.scaling_factor * latents
|
595 |
+
image = self.vae.decode(latents, return_dict=False)[0]
|
596 |
+
image = (image / 2 + 0.5).clamp(0, 1)
|
597 |
+
# we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16
|
598 |
+
image = image.cpu().permute(0, 2, 3, 1).float().numpy()
|
599 |
+
return image
|
600 |
+
|
601 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs
|
602 |
+
def prepare_extra_step_kwargs(self, generator, eta):
|
603 |
+
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
|
604 |
+
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
|
605 |
+
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
|
606 |
+
# and should be between [0, 1]
|
607 |
+
|
608 |
+
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
609 |
+
extra_step_kwargs = {}
|
610 |
+
if accepts_eta:
|
611 |
+
extra_step_kwargs["eta"] = eta
|
612 |
+
|
613 |
+
# check if the scheduler accepts generator
|
614 |
+
accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
615 |
+
if accepts_generator:
|
616 |
+
extra_step_kwargs["generator"] = generator
|
617 |
+
return extra_step_kwargs
|
618 |
+
|
619 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_img2img.StableDiffusionImg2ImgPipeline.get_timesteps
|
620 |
+
def get_timesteps(self, num_inference_steps, strength, device):
|
621 |
+
# get the original timestep using init_timestep
|
622 |
+
init_timestep = min(int(num_inference_steps * strength), num_inference_steps)
|
623 |
+
|
624 |
+
t_start = max(num_inference_steps - init_timestep, 0)
|
625 |
+
timesteps = self.scheduler.timesteps[t_start * self.scheduler.order :]
|
626 |
+
|
627 |
+
return timesteps, num_inference_steps - t_start
|
628 |
+
|
629 |
+
def check_inputs(
|
630 |
+
self,
|
631 |
+
prompt,
|
632 |
+
image,
|
633 |
+
height,
|
634 |
+
width,
|
635 |
+
callback_steps,
|
636 |
+
negative_prompt=None,
|
637 |
+
prompt_embeds=None,
|
638 |
+
negative_prompt_embeds=None,
|
639 |
+
controlnet_conditioning_scale=1.0,
|
640 |
+
):
|
641 |
+
if height % 8 != 0 or width % 8 != 0:
|
642 |
+
raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")
|
643 |
+
|
644 |
+
if (callback_steps is None) or (
|
645 |
+
callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0)
|
646 |
+
):
|
647 |
+
raise ValueError(
|
648 |
+
f"`callback_steps` has to be a positive integer but is {callback_steps} of type"
|
649 |
+
f" {type(callback_steps)}."
|
650 |
+
)
|
651 |
+
|
652 |
+
if prompt is not None and prompt_embeds is not None:
|
653 |
+
raise ValueError(
|
654 |
+
f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
|
655 |
+
" only forward one of the two."
|
656 |
+
)
|
657 |
+
elif prompt is None and prompt_embeds is None:
|
658 |
+
raise ValueError(
|
659 |
+
"Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
|
660 |
+
)
|
661 |
+
elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
|
662 |
+
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
|
663 |
+
|
664 |
+
if negative_prompt is not None and negative_prompt_embeds is not None:
|
665 |
+
raise ValueError(
|
666 |
+
f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:"
|
667 |
+
f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
|
668 |
+
)
|
669 |
+
|
670 |
+
if prompt_embeds is not None and negative_prompt_embeds is not None:
|
671 |
+
if prompt_embeds.shape != negative_prompt_embeds.shape:
|
672 |
+
raise ValueError(
|
673 |
+
"`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but"
|
674 |
+
f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`"
|
675 |
+
f" {negative_prompt_embeds.shape}."
|
676 |
+
)
|
677 |
+
|
678 |
+
# `prompt` needs more sophisticated handling when there are multiple
|
679 |
+
# conditionings.
|
680 |
+
if isinstance(self.controlnet, MultiControlNetModel):
|
681 |
+
if isinstance(prompt, list):
|
682 |
+
logger.warning(
|
683 |
+
f"You have {len(self.controlnet.nets)} ControlNets and you have passed {len(prompt)}"
|
684 |
+
" prompts. The conditionings will be fixed across the prompts."
|
685 |
+
)
|
686 |
+
|
687 |
+
# Check `image`
|
688 |
+
is_compiled = hasattr(F, "scaled_dot_product_attention") and isinstance(
|
689 |
+
self.controlnet, torch._dynamo.eval_frame.OptimizedModule
|
690 |
+
)
|
691 |
+
if (
|
692 |
+
isinstance(self.controlnet, ControlNetModel)
|
693 |
+
or is_compiled
|
694 |
+
and isinstance(self.controlnet._orig_mod, ControlNetModel)
|
695 |
+
):
|
696 |
+
self.check_image(image, prompt, prompt_embeds)
|
697 |
+
elif (
|
698 |
+
isinstance(self.controlnet, MultiControlNetModel)
|
699 |
+
or is_compiled
|
700 |
+
and isinstance(self.controlnet._orig_mod, MultiControlNetModel)
|
701 |
+
):
|
702 |
+
if not isinstance(image, list):
|
703 |
+
raise TypeError("For multiple controlnets: `image` must be type `list`")
|
704 |
+
|
705 |
+
# When `image` is a nested list:
|
706 |
+
# (e.g. [[canny_image_1, pose_image_1], [canny_image_2, pose_image_2]])
|
707 |
+
elif any(isinstance(i, list) for i in image):
|
708 |
+
raise ValueError("A single batch of multiple conditionings are supported at the moment.")
|
709 |
+
elif len(image) != len(self.controlnet.nets):
|
710 |
+
raise ValueError(
|
711 |
+
"For multiple controlnets: `image` must have the same length as the number of controlnets."
|
712 |
+
)
|
713 |
+
|
714 |
+
for image_ in image:
|
715 |
+
self.check_image(image_, prompt, prompt_embeds)
|
716 |
+
else:
|
717 |
+
assert False
|
718 |
+
|
719 |
+
# Check `controlnet_conditioning_scale`
|
720 |
+
if (
|
721 |
+
isinstance(self.controlnet, ControlNetModel)
|
722 |
+
or is_compiled
|
723 |
+
and isinstance(self.controlnet._orig_mod, ControlNetModel)
|
724 |
+
):
|
725 |
+
if not isinstance(controlnet_conditioning_scale, float):
|
726 |
+
raise TypeError("For single controlnet: `controlnet_conditioning_scale` must be type `float`.")
|
727 |
+
elif (
|
728 |
+
isinstance(self.controlnet, MultiControlNetModel)
|
729 |
+
or is_compiled
|
730 |
+
and isinstance(self.controlnet._orig_mod, MultiControlNetModel)
|
731 |
+
):
|
732 |
+
if isinstance(controlnet_conditioning_scale, list):
|
733 |
+
if any(isinstance(i, list) for i in controlnet_conditioning_scale):
|
734 |
+
raise ValueError("A single batch of multiple conditionings are supported at the moment.")
|
735 |
+
elif isinstance(controlnet_conditioning_scale, list) and len(controlnet_conditioning_scale) != len(
|
736 |
+
self.controlnet.nets
|
737 |
+
):
|
738 |
+
raise ValueError(
|
739 |
+
"For multiple controlnets: When `controlnet_conditioning_scale` is specified as `list`, it must have"
|
740 |
+
" the same length as the number of controlnets"
|
741 |
+
)
|
742 |
+
else:
|
743 |
+
assert False
|
744 |
+
|
745 |
+
def check_image(self, image, prompt, prompt_embeds):
|
746 |
+
image_is_pil = isinstance(image, PIL.Image.Image)
|
747 |
+
image_is_tensor = isinstance(image, torch.Tensor)
|
748 |
+
image_is_pil_list = isinstance(image, list) and isinstance(image[0], PIL.Image.Image)
|
749 |
+
image_is_tensor_list = isinstance(image, list) and isinstance(image[0], torch.Tensor)
|
750 |
+
|
751 |
+
if not image_is_pil and not image_is_tensor and not image_is_pil_list and not image_is_tensor_list:
|
752 |
+
raise TypeError(
|
753 |
+
"image must be passed and be one of PIL image, torch tensor, list of PIL images, or list of torch tensors"
|
754 |
+
)
|
755 |
+
|
756 |
+
if image_is_pil:
|
757 |
+
image_batch_size = 1
|
758 |
+
elif image_is_tensor:
|
759 |
+
image_batch_size = image.shape[0]
|
760 |
+
elif image_is_pil_list:
|
761 |
+
image_batch_size = len(image)
|
762 |
+
elif image_is_tensor_list:
|
763 |
+
image_batch_size = len(image)
|
764 |
+
|
765 |
+
if prompt is not None and isinstance(prompt, str):
|
766 |
+
prompt_batch_size = 1
|
767 |
+
elif prompt is not None and isinstance(prompt, list):
|
768 |
+
prompt_batch_size = len(prompt)
|
769 |
+
elif prompt_embeds is not None:
|
770 |
+
prompt_batch_size = prompt_embeds.shape[0]
|
771 |
+
|
772 |
+
if image_batch_size != 1 and image_batch_size != prompt_batch_size:
|
773 |
+
raise ValueError(
|
774 |
+
f"If image batch size is not 1, image batch size must be same as prompt batch size. image batch size: {image_batch_size}, prompt batch size: {prompt_batch_size}"
|
775 |
+
)
|
776 |
+
|
777 |
+
# Copied from diffusers.pipelines.controlnet.pipeline_controlnet.StableDiffusionControlNetPipeline.prepare_image
|
778 |
+
def prepare_control_image(
|
779 |
+
self,
|
780 |
+
image,
|
781 |
+
width,
|
782 |
+
height,
|
783 |
+
batch_size,
|
784 |
+
num_images_per_prompt,
|
785 |
+
device,
|
786 |
+
dtype,
|
787 |
+
do_classifier_free_guidance=False,
|
788 |
+
guess_mode=False,
|
789 |
+
):
|
790 |
+
if not isinstance(image, torch.Tensor):
|
791 |
+
if isinstance(image, PIL.Image.Image):
|
792 |
+
image = [image]
|
793 |
+
|
794 |
+
if isinstance(image[0], PIL.Image.Image):
|
795 |
+
images = []
|
796 |
+
|
797 |
+
for image_ in image:
|
798 |
+
image_ = image_.convert("RGB")
|
799 |
+
image_ = image_.resize((width, height), resample=PIL_INTERPOLATION["lanczos"])
|
800 |
+
image_ = np.array(image_)
|
801 |
+
image_ = image_[None, :]
|
802 |
+
images.append(image_)
|
803 |
+
|
804 |
+
image = images
|
805 |
+
|
806 |
+
image = np.concatenate(image, axis=0)
|
807 |
+
image = np.array(image).astype(np.float32) / 255.0
|
808 |
+
image = image.transpose(0, 3, 1, 2)
|
809 |
+
image = torch.from_numpy(image)
|
810 |
+
elif isinstance(image[0], torch.Tensor):
|
811 |
+
image = torch.cat(image, dim=0)
|
812 |
+
|
813 |
+
image_batch_size = image.shape[0]
|
814 |
+
|
815 |
+
if image_batch_size == 1:
|
816 |
+
repeat_by = batch_size
|
817 |
+
else:
|
818 |
+
# image batch size is the same as prompt batch size
|
819 |
+
repeat_by = num_images_per_prompt
|
820 |
+
|
821 |
+
image = image.repeat_interleave(repeat_by, dim=0)
|
822 |
+
|
823 |
+
image = image.to(device=device, dtype=dtype)
|
824 |
+
|
825 |
+
if do_classifier_free_guidance and not guess_mode:
|
826 |
+
image = torch.cat([image] * 2)
|
827 |
+
|
828 |
+
return image
|
829 |
+
|
830 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_inpaint.StableDiffusionInpaintPipeline.prepare_latents
|
831 |
+
def prepare_latents(
|
832 |
+
self,
|
833 |
+
batch_size,
|
834 |
+
num_channels_latents,
|
835 |
+
height,
|
836 |
+
width,
|
837 |
+
dtype,
|
838 |
+
device,
|
839 |
+
generator,
|
840 |
+
latents=None,
|
841 |
+
image=None,
|
842 |
+
timestep=None,
|
843 |
+
is_strength_max=True,
|
844 |
+
return_noise=False,
|
845 |
+
return_image_latents=False,
|
846 |
+
):
|
847 |
+
shape = (batch_size, num_channels_latents, height // self.vae_scale_factor, width // self.vae_scale_factor)
|
848 |
+
if isinstance(generator, list) and len(generator) != batch_size:
|
849 |
+
raise ValueError(
|
850 |
+
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
|
851 |
+
f" size of {batch_size}. Make sure the batch size matches the length of the generators."
|
852 |
+
)
|
853 |
+
|
854 |
+
if (image is None or timestep is None) and not is_strength_max:
|
855 |
+
raise ValueError(
|
856 |
+
"Since strength < 1. initial latents are to be initialised as a combination of Image + Noise."
|
857 |
+
"However, either the image or the noise timestep has not been provided."
|
858 |
+
)
|
859 |
+
|
860 |
+
if return_image_latents or (latents is None and not is_strength_max):
|
861 |
+
image = image.to(device=device, dtype=dtype)
|
862 |
+
image_latents = self._encode_vae_image(image=image, generator=generator)
|
863 |
+
|
864 |
+
if latents is None:
|
865 |
+
noise = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
|
866 |
+
# if strength is 1. then initialise the latents to noise, else initial to image + noise
|
867 |
+
latents = noise if is_strength_max else self.scheduler.add_noise(image_latents, noise, timestep)
|
868 |
+
# if pure noise then scale the initial latents by the Scheduler's init sigma
|
869 |
+
latents = latents * self.scheduler.init_noise_sigma if is_strength_max else latents
|
870 |
+
else:
|
871 |
+
noise = latents.to(device)
|
872 |
+
latents = noise * self.scheduler.init_noise_sigma
|
873 |
+
|
874 |
+
outputs = (latents,)
|
875 |
+
|
876 |
+
if return_noise:
|
877 |
+
outputs += (noise,)
|
878 |
+
|
879 |
+
if return_image_latents:
|
880 |
+
outputs += (image_latents,)
|
881 |
+
|
882 |
+
return outputs
|
883 |
+
|
884 |
+
def _default_height_width(self, height, width, image):
|
885 |
+
# NOTE: It is possible that a list of images have different
|
886 |
+
# dimensions for each image, so just checking the first image
|
887 |
+
# is not _exactly_ correct, but it is simple.
|
888 |
+
while isinstance(image, list):
|
889 |
+
image = image[0]
|
890 |
+
|
891 |
+
if height is None:
|
892 |
+
if isinstance(image, PIL.Image.Image):
|
893 |
+
height = image.height
|
894 |
+
elif isinstance(image, torch.Tensor):
|
895 |
+
height = image.shape[2]
|
896 |
+
|
897 |
+
height = (height // 8) * 8 # round down to nearest multiple of 8
|
898 |
+
|
899 |
+
if width is None:
|
900 |
+
if isinstance(image, PIL.Image.Image):
|
901 |
+
width = image.width
|
902 |
+
elif isinstance(image, torch.Tensor):
|
903 |
+
width = image.shape[3]
|
904 |
+
|
905 |
+
width = (width // 8) * 8 # round down to nearest multiple of 8
|
906 |
+
|
907 |
+
return height, width
|
908 |
+
|
909 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_inpaint.StableDiffusionInpaintPipeline.prepare_mask_latents
|
910 |
+
def prepare_mask_latents(
|
911 |
+
self, mask, masked_image, batch_size, height, width, dtype, device, generator, do_classifier_free_guidance
|
912 |
+
):
|
913 |
+
# resize the mask to latents shape as we concatenate the mask to the latents
|
914 |
+
# we do that before converting to dtype to avoid breaking in case we're using cpu_offload
|
915 |
+
# and half precision
|
916 |
+
mask = torch.nn.functional.interpolate(
|
917 |
+
mask, size=(height // self.vae_scale_factor, width // self.vae_scale_factor)
|
918 |
+
)
|
919 |
+
mask = mask.to(device=device, dtype=dtype)
|
920 |
+
|
921 |
+
masked_image = masked_image.to(device=device, dtype=dtype)
|
922 |
+
masked_image_latents = self._encode_vae_image(masked_image, generator=generator)
|
923 |
+
|
924 |
+
# duplicate mask and masked_image_latents for each generation per prompt, using mps friendly method
|
925 |
+
if mask.shape[0] < batch_size:
|
926 |
+
if not batch_size % mask.shape[0] == 0:
|
927 |
+
raise ValueError(
|
928 |
+
"The passed mask and the required batch size don't match. Masks are supposed to be duplicated to"
|
929 |
+
f" a total batch size of {batch_size}, but {mask.shape[0]} masks were passed. Make sure the number"
|
930 |
+
" of masks that you pass is divisible by the total requested batch size."
|
931 |
+
)
|
932 |
+
mask = mask.repeat(batch_size // mask.shape[0], 1, 1, 1)
|
933 |
+
if masked_image_latents.shape[0] < batch_size:
|
934 |
+
if not batch_size % masked_image_latents.shape[0] == 0:
|
935 |
+
raise ValueError(
|
936 |
+
"The passed images and the required batch size don't match. Images are supposed to be duplicated"
|
937 |
+
f" to a total batch size of {batch_size}, but {masked_image_latents.shape[0]} images were passed."
|
938 |
+
" Make sure the number of images that you pass is divisible by the total requested batch size."
|
939 |
+
)
|
940 |
+
masked_image_latents = masked_image_latents.repeat(batch_size // masked_image_latents.shape[0], 1, 1, 1)
|
941 |
+
|
942 |
+
mask = torch.cat([mask] * 2) if do_classifier_free_guidance else mask
|
943 |
+
masked_image_latents = (
|
944 |
+
torch.cat([masked_image_latents] * 2) if do_classifier_free_guidance else masked_image_latents
|
945 |
+
)
|
946 |
+
|
947 |
+
# aligning device to prevent device errors when concating it with the latent model input
|
948 |
+
masked_image_latents = masked_image_latents.to(device=device, dtype=dtype)
|
949 |
+
return mask, masked_image_latents
|
950 |
+
|
951 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_inpaint.StableDiffusionInpaintPipeline._encode_vae_image
|
952 |
+
def _encode_vae_image(self, image: torch.Tensor, generator: torch.Generator):
|
953 |
+
if isinstance(generator, list):
|
954 |
+
image_latents = [
|
955 |
+
self.vae.encode(image[i : i + 1]).latent_dist.sample(generator=generator[i])
|
956 |
+
for i in range(image.shape[0])
|
957 |
+
]
|
958 |
+
image_latents = torch.cat(image_latents, dim=0)
|
959 |
+
else:
|
960 |
+
image_latents = self.vae.encode(image).latent_dist.sample(generator=generator)
|
961 |
+
|
962 |
+
image_latents = self.vae.config.scaling_factor * image_latents
|
963 |
+
|
964 |
+
return image_latents
|
965 |
+
|
966 |
+
# override DiffusionPipeline
|
967 |
+
def save_pretrained(
|
968 |
+
self,
|
969 |
+
save_directory: Union[str, os.PathLike],
|
970 |
+
safe_serialization: bool = False,
|
971 |
+
variant: Optional[str] = None,
|
972 |
+
):
|
973 |
+
if isinstance(self.controlnet, ControlNetModel):
|
974 |
+
super().save_pretrained(save_directory, safe_serialization, variant)
|
975 |
+
else:
|
976 |
+
raise NotImplementedError("Currently, the `save_pretrained()` is not implemented for Multi-ControlNet.")
|
977 |
+
|
978 |
+
@torch.no_grad()
|
979 |
+
@replace_example_docstring(EXAMPLE_DOC_STRING)
|
980 |
+
def __call__(
|
981 |
+
self,
|
982 |
+
prompt: Union[str, List[str]] = None,
|
983 |
+
image: Union[torch.Tensor, PIL.Image.Image] = None,
|
984 |
+
mask_image: Union[torch.Tensor, PIL.Image.Image] = None,
|
985 |
+
control_image: Union[
|
986 |
+
torch.FloatTensor, PIL.Image.Image, List[torch.FloatTensor], List[PIL.Image.Image]
|
987 |
+
] = None,
|
988 |
+
height: Optional[int] = None,
|
989 |
+
width: Optional[int] = None,
|
990 |
+
strength: float = 1.0,
|
991 |
+
num_inference_steps: int = 50,
|
992 |
+
guidance_scale: float = 7.5,
|
993 |
+
negative_prompt: Optional[Union[str, List[str]]] = None,
|
994 |
+
num_images_per_prompt: Optional[int] = 1,
|
995 |
+
eta: float = 0.0,
|
996 |
+
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
997 |
+
latents: Optional[torch.FloatTensor] = None,
|
998 |
+
prompt_embeds: Optional[torch.FloatTensor] = None,
|
999 |
+
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
|
1000 |
+
output_type: Optional[str] = "pil",
|
1001 |
+
return_dict: bool = True,
|
1002 |
+
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
|
1003 |
+
callback_steps: int = 1,
|
1004 |
+
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
1005 |
+
controlnet_conditioning_scale: Union[float, List[float]] = 0.5,
|
1006 |
+
guess_mode: bool = False,
|
1007 |
+
):
|
1008 |
+
r"""
|
1009 |
+
Function invoked when calling the pipeline for generation.
|
1010 |
+
|
1011 |
+
Args:
|
1012 |
+
prompt (`str` or `List[str]`, *optional*):
|
1013 |
+
The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
|
1014 |
+
instead.
|
1015 |
+
image (`torch.FloatTensor`, `PIL.Image.Image`, `List[torch.FloatTensor]`, `List[PIL.Image.Image]`,
|
1016 |
+
`List[List[torch.FloatTensor]]`, or `List[List[PIL.Image.Image]]`):
|
1017 |
+
The ControlNet input condition. ControlNet uses this input condition to generate guidance to Unet. If
|
1018 |
+
the type is specified as `Torch.FloatTensor`, it is passed to ControlNet as is. `PIL.Image.Image` can
|
1019 |
+
also be accepted as an image. The dimensions of the output image defaults to `image`'s dimensions. If
|
1020 |
+
height and/or width are passed, `image` is resized according to them. If multiple ControlNets are
|
1021 |
+
specified in init, images must be passed as a list such that each element of the list can be correctly
|
1022 |
+
batched for input to a single controlnet.
|
1023 |
+
height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
|
1024 |
+
The height in pixels of the generated image.
|
1025 |
+
width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
|
1026 |
+
The width in pixels of the generated image.
|
1027 |
+
strength (`float`, *optional*, defaults to 1.):
|
1028 |
+
Conceptually, indicates how much to transform the masked portion of the reference `image`. Must be
|
1029 |
+
between 0 and 1. `image` will be used as a starting point, adding more noise to it the larger the
|
1030 |
+
`strength`. The number of denoising steps depends on the amount of noise initially added. When
|
1031 |
+
`strength` is 1, added noise will be maximum and the denoising process will run for the full number of
|
1032 |
+
iterations specified in `num_inference_steps`. A value of 1, therefore, essentially ignores the masked
|
1033 |
+
portion of the reference `image`.
|
1034 |
+
num_inference_steps (`int`, *optional*, defaults to 50):
|
1035 |
+
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
|
1036 |
+
expense of slower inference.
|
1037 |
+
guidance_scale (`float`, *optional*, defaults to 7.5):
|
1038 |
+
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
|
1039 |
+
`guidance_scale` is defined as `w` of equation 2. of [Imagen
|
1040 |
+
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
|
1041 |
+
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
|
1042 |
+
usually at the expense of lower image quality.
|
1043 |
+
negative_prompt (`str` or `List[str]`, *optional*):
|
1044 |
+
The prompt or prompts not to guide the image generation. If not defined, one has to pass
|
1045 |
+
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
|
1046 |
+
less than `1`).
|
1047 |
+
num_images_per_prompt (`int`, *optional*, defaults to 1):
|
1048 |
+
The number of images to generate per prompt.
|
1049 |
+
eta (`float`, *optional*, defaults to 0.0):
|
1050 |
+
Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to
|
1051 |
+
[`schedulers.DDIMScheduler`], will be ignored for others.
|
1052 |
+
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
|
1053 |
+
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
|
1054 |
+
to make generation deterministic.
|
1055 |
+
latents (`torch.FloatTensor`, *optional*):
|
1056 |
+
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
|
1057 |
+
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
|
1058 |
+
tensor will ge generated by sampling using the supplied random `generator`.
|
1059 |
+
prompt_embeds (`torch.FloatTensor`, *optional*):
|
1060 |
+
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
|
1061 |
+
provided, text embeddings will be generated from `prompt` input argument.
|
1062 |
+
negative_prompt_embeds (`torch.FloatTensor`, *optional*):
|
1063 |
+
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
1064 |
+
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
|
1065 |
+
argument.
|
1066 |
+
output_type (`str`, *optional*, defaults to `"pil"`):
|
1067 |
+
The output format of the generate image. Choose between
|
1068 |
+
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
|
1069 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
1070 |
+
Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
|
1071 |
+
plain tuple.
|
1072 |
+
callback (`Callable`, *optional*):
|
1073 |
+
A function that will be called every `callback_steps` steps during inference. The function will be
|
1074 |
+
called with the following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`.
|
1075 |
+
callback_steps (`int`, *optional*, defaults to 1):
|
1076 |
+
The frequency at which the `callback` function will be called. If not specified, the callback will be
|
1077 |
+
called at every step.
|
1078 |
+
cross_attention_kwargs (`dict`, *optional*):
|
1079 |
+
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
|
1080 |
+
`self.processor` in
|
1081 |
+
[diffusers.cross_attention](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/cross_attention.py).
|
1082 |
+
controlnet_conditioning_scale (`float` or `List[float]`, *optional*, defaults to 0.5):
|
1083 |
+
The outputs of the controlnet are multiplied by `controlnet_conditioning_scale` before they are added
|
1084 |
+
to the residual in the original unet. If multiple ControlNets are specified in init, you can set the
|
1085 |
+
corresponding scale as a list. Note that by default, we use a smaller conditioning scale for inpainting
|
1086 |
+
than for [`~StableDiffusionControlNetPipeline.__call__`].
|
1087 |
+
guess_mode (`bool`, *optional*, defaults to `False`):
|
1088 |
+
In this mode, the ControlNet encoder will try best to recognize the content of the input image even if
|
1089 |
+
you remove all prompts. The `guidance_scale` between 3.0 and 5.0 is recommended.
|
1090 |
+
|
1091 |
+
Examples:
|
1092 |
+
|
1093 |
+
Returns:
|
1094 |
+
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`:
|
1095 |
+
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] if `return_dict` is True, otherwise a `tuple.
|
1096 |
+
When returning a tuple, the first element is a list with the generated images, and the second element is a
|
1097 |
+
list of `bool`s denoting whether the corresponding generated image likely represents "not-safe-for-work"
|
1098 |
+
(nsfw) content, according to the `safety_checker`.
|
1099 |
+
"""
|
1100 |
+
# 0. Default height and width to unet
|
1101 |
+
height, width = self._default_height_width(height, width, image)
|
1102 |
+
|
1103 |
+
# 1. Check inputs. Raise error if not correct
|
1104 |
+
self.check_inputs(
|
1105 |
+
prompt,
|
1106 |
+
control_image,
|
1107 |
+
height,
|
1108 |
+
width,
|
1109 |
+
callback_steps,
|
1110 |
+
negative_prompt,
|
1111 |
+
prompt_embeds,
|
1112 |
+
negative_prompt_embeds,
|
1113 |
+
controlnet_conditioning_scale,
|
1114 |
+
)
|
1115 |
+
|
1116 |
+
# 2. Define call parameters
|
1117 |
+
if prompt is not None and isinstance(prompt, str):
|
1118 |
+
batch_size = 1
|
1119 |
+
elif prompt is not None and isinstance(prompt, list):
|
1120 |
+
batch_size = len(prompt)
|
1121 |
+
else:
|
1122 |
+
batch_size = prompt_embeds.shape[0]
|
1123 |
+
|
1124 |
+
device = self._execution_device
|
1125 |
+
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
|
1126 |
+
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
|
1127 |
+
# corresponds to doing no classifier free guidance.
|
1128 |
+
do_classifier_free_guidance = guidance_scale > 1.0
|
1129 |
+
|
1130 |
+
controlnet = self.controlnet._orig_mod if is_compiled_module(self.controlnet) else self.controlnet
|
1131 |
+
|
1132 |
+
if isinstance(controlnet, MultiControlNetModel) and isinstance(controlnet_conditioning_scale, float):
|
1133 |
+
controlnet_conditioning_scale = [controlnet_conditioning_scale] * len(controlnet.nets)
|
1134 |
+
|
1135 |
+
global_pool_conditions = (
|
1136 |
+
controlnet.config.global_pool_conditions
|
1137 |
+
if isinstance(controlnet, ControlNetModel)
|
1138 |
+
else controlnet.nets[0].config.global_pool_conditions
|
1139 |
+
)
|
1140 |
+
guess_mode = guess_mode or global_pool_conditions
|
1141 |
+
|
1142 |
+
# 3. Encode input prompt
|
1143 |
+
prompt_embeds = self._encode_prompt(
|
1144 |
+
prompt,
|
1145 |
+
device,
|
1146 |
+
num_images_per_prompt,
|
1147 |
+
do_classifier_free_guidance,
|
1148 |
+
negative_prompt,
|
1149 |
+
prompt_embeds=prompt_embeds,
|
1150 |
+
negative_prompt_embeds=negative_prompt_embeds,
|
1151 |
+
)
|
1152 |
+
|
1153 |
+
# 4. Prepare image
|
1154 |
+
if isinstance(controlnet, ControlNetModel):
|
1155 |
+
control_image = self.prepare_control_image(
|
1156 |
+
image=control_image,
|
1157 |
+
width=width,
|
1158 |
+
height=height,
|
1159 |
+
batch_size=batch_size * num_images_per_prompt,
|
1160 |
+
num_images_per_prompt=num_images_per_prompt,
|
1161 |
+
device=device,
|
1162 |
+
dtype=controlnet.dtype,
|
1163 |
+
do_classifier_free_guidance=do_classifier_free_guidance,
|
1164 |
+
guess_mode=guess_mode,
|
1165 |
+
)
|
1166 |
+
elif isinstance(controlnet, MultiControlNetModel):
|
1167 |
+
control_images = []
|
1168 |
+
|
1169 |
+
for control_image_ in control_image:
|
1170 |
+
control_image_ = self.prepare_control_image(
|
1171 |
+
image=control_image_,
|
1172 |
+
width=width,
|
1173 |
+
height=height,
|
1174 |
+
batch_size=batch_size * num_images_per_prompt,
|
1175 |
+
num_images_per_prompt=num_images_per_prompt,
|
1176 |
+
device=device,
|
1177 |
+
dtype=controlnet.dtype,
|
1178 |
+
do_classifier_free_guidance=do_classifier_free_guidance,
|
1179 |
+
guess_mode=guess_mode,
|
1180 |
+
)
|
1181 |
+
|
1182 |
+
control_images.append(control_image_)
|
1183 |
+
|
1184 |
+
control_image = control_images
|
1185 |
+
else:
|
1186 |
+
assert False
|
1187 |
+
|
1188 |
+
# 4. Preprocess mask and image - resizes image and mask w.r.t height and width
|
1189 |
+
mask, masked_image, init_image = prepare_mask_and_masked_image(
|
1190 |
+
image, mask_image, height, width, return_image=True
|
1191 |
+
)
|
1192 |
+
|
1193 |
+
# 5. Prepare timesteps
|
1194 |
+
self.scheduler.set_timesteps(num_inference_steps, device=device)
|
1195 |
+
timesteps, num_inference_steps = self.get_timesteps(
|
1196 |
+
num_inference_steps=num_inference_steps, strength=strength, device=device
|
1197 |
+
)
|
1198 |
+
# at which timestep to set the initial noise (n.b. 50% if strength is 0.5)
|
1199 |
+
latent_timestep = timesteps[:1].repeat(batch_size * num_images_per_prompt)
|
1200 |
+
# create a boolean to check if the strength is set to 1. if so then initialise the latents with pure noise
|
1201 |
+
is_strength_max = strength == 1.0
|
1202 |
+
|
1203 |
+
# 6. Prepare latent variables
|
1204 |
+
num_channels_latents = self.vae.config.latent_channels
|
1205 |
+
num_channels_unet = self.unet.config.in_channels
|
1206 |
+
return_image_latents = num_channels_unet == 4
|
1207 |
+
latents_outputs = self.prepare_latents(
|
1208 |
+
batch_size * num_images_per_prompt,
|
1209 |
+
num_channels_latents,
|
1210 |
+
height,
|
1211 |
+
width,
|
1212 |
+
prompt_embeds.dtype,
|
1213 |
+
device,
|
1214 |
+
generator,
|
1215 |
+
latents,
|
1216 |
+
image=init_image,
|
1217 |
+
timestep=latent_timestep,
|
1218 |
+
is_strength_max=is_strength_max,
|
1219 |
+
return_noise=True,
|
1220 |
+
return_image_latents=return_image_latents,
|
1221 |
+
)
|
1222 |
+
|
1223 |
+
if return_image_latents:
|
1224 |
+
latents, noise, image_latents = latents_outputs
|
1225 |
+
else:
|
1226 |
+
latents, noise = latents_outputs
|
1227 |
+
|
1228 |
+
# 7. Prepare mask latent variables
|
1229 |
+
mask, masked_image_latents = self.prepare_mask_latents(
|
1230 |
+
mask,
|
1231 |
+
masked_image,
|
1232 |
+
batch_size * num_images_per_prompt,
|
1233 |
+
height,
|
1234 |
+
width,
|
1235 |
+
prompt_embeds.dtype,
|
1236 |
+
device,
|
1237 |
+
generator,
|
1238 |
+
do_classifier_free_guidance,
|
1239 |
+
)
|
1240 |
+
|
1241 |
+
# 7. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
|
1242 |
+
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
|
1243 |
+
|
1244 |
+
# 8. Denoising loop
|
1245 |
+
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
|
1246 |
+
with self.progress_bar(total=num_inference_steps) as progress_bar:
|
1247 |
+
for i, t in enumerate(timesteps):
|
1248 |
+
# expand the latents if we are doing classifier free guidance
|
1249 |
+
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
|
1250 |
+
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
|
1251 |
+
|
1252 |
+
# controlnet(s) inference
|
1253 |
+
if guess_mode and do_classifier_free_guidance:
|
1254 |
+
# Infer ControlNet only for the conditional batch.
|
1255 |
+
control_model_input = latents
|
1256 |
+
control_model_input = self.scheduler.scale_model_input(control_model_input, t)
|
1257 |
+
controlnet_prompt_embeds = prompt_embeds.chunk(2)[1]
|
1258 |
+
else:
|
1259 |
+
control_model_input = latent_model_input
|
1260 |
+
controlnet_prompt_embeds = prompt_embeds
|
1261 |
+
|
1262 |
+
down_block_res_samples, mid_block_res_sample = self.controlnet(
|
1263 |
+
control_model_input,
|
1264 |
+
t,
|
1265 |
+
encoder_hidden_states=controlnet_prompt_embeds,
|
1266 |
+
controlnet_cond=control_image,
|
1267 |
+
conditioning_scale=controlnet_conditioning_scale,
|
1268 |
+
guess_mode=guess_mode,
|
1269 |
+
return_dict=False,
|
1270 |
+
)
|
1271 |
+
|
1272 |
+
if guess_mode and do_classifier_free_guidance:
|
1273 |
+
# Infered ControlNet only for the conditional batch.
|
1274 |
+
# To apply the output of ControlNet to both the unconditional and conditional batches,
|
1275 |
+
# add 0 to the unconditional batch to keep it unchanged.
|
1276 |
+
down_block_res_samples = [torch.cat([torch.zeros_like(d), d]) for d in down_block_res_samples]
|
1277 |
+
mid_block_res_sample = torch.cat([torch.zeros_like(mid_block_res_sample), mid_block_res_sample])
|
1278 |
+
|
1279 |
+
# predict the noise residual
|
1280 |
+
if num_channels_unet == 9:
|
1281 |
+
latent_model_input = torch.cat([latent_model_input, mask, masked_image_latents], dim=1)
|
1282 |
+
|
1283 |
+
noise_pred = self.unet(
|
1284 |
+
latent_model_input,
|
1285 |
+
t,
|
1286 |
+
encoder_hidden_states=prompt_embeds,
|
1287 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
1288 |
+
down_block_additional_residuals=down_block_res_samples,
|
1289 |
+
mid_block_additional_residual=mid_block_res_sample,
|
1290 |
+
return_dict=False,
|
1291 |
+
)[0]
|
1292 |
+
|
1293 |
+
# perform guidance
|
1294 |
+
if do_classifier_free_guidance:
|
1295 |
+
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
1296 |
+
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
|
1297 |
+
|
1298 |
+
# compute the previous noisy sample x_t -> x_t-1
|
1299 |
+
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0]
|
1300 |
+
|
1301 |
+
if num_channels_unet == 4:
|
1302 |
+
init_latents_proper = image_latents[:1]
|
1303 |
+
init_mask = mask[:1]
|
1304 |
+
|
1305 |
+
if i < len(timesteps) - 1:
|
1306 |
+
init_latents_proper = self.scheduler.add_noise(init_latents_proper, noise, torch.tensor([t]))
|
1307 |
+
|
1308 |
+
latents = (1 - init_mask) * init_latents_proper + init_mask * latents
|
1309 |
+
|
1310 |
+
# call the callback, if provided
|
1311 |
+
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
|
1312 |
+
progress_bar.update()
|
1313 |
+
if callback is not None and i % callback_steps == 0:
|
1314 |
+
callback(i, t, latents)
|
1315 |
+
|
1316 |
+
# If we do sequential model offloading, let's offload unet and controlnet
|
1317 |
+
# manually for max memory savings
|
1318 |
+
if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None:
|
1319 |
+
self.unet.to("cpu")
|
1320 |
+
self.controlnet.to("cpu")
|
1321 |
+
torch.cuda.empty_cache()
|
1322 |
+
|
1323 |
+
if not output_type == "latent":
|
1324 |
+
image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0]
|
1325 |
+
image, has_nsfw_concept = self.run_safety_checker(image, device, prompt_embeds.dtype)
|
1326 |
+
else:
|
1327 |
+
image = latents
|
1328 |
+
has_nsfw_concept = None
|
1329 |
+
|
1330 |
+
if has_nsfw_concept is None:
|
1331 |
+
do_denormalize = [True] * image.shape[0]
|
1332 |
+
else:
|
1333 |
+
do_denormalize = [not has_nsfw for has_nsfw in has_nsfw_concept]
|
1334 |
+
|
1335 |
+
image = self.image_processor.postprocess(image, output_type=output_type, do_denormalize=do_denormalize)
|
1336 |
+
|
1337 |
+
# Offload last model to CPU
|
1338 |
+
if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None:
|
1339 |
+
self.final_offload_hook.offload()
|
1340 |
+
|
1341 |
+
if not return_dict:
|
1342 |
+
return (image, has_nsfw_concept)
|
1343 |
+
|
1344 |
+
return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept)
|
stable_diffusion_controlnet_inpaint_img2img.py
ADDED
@@ -0,0 +1,1323 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2023 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
|
16 |
+
import inspect
|
17 |
+
import os
|
18 |
+
import warnings
|
19 |
+
from typing import Any, Callable, Dict, List, Optional, Tuple, Union
|
20 |
+
|
21 |
+
import numpy as np
|
22 |
+
import PIL.Image
|
23 |
+
import torch
|
24 |
+
import torch.nn.functional as F
|
25 |
+
from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer
|
26 |
+
|
27 |
+
from ...image_processor import VaeImageProcessor
|
28 |
+
from ...loaders import TextualInversionLoaderMixin
|
29 |
+
from ...models import AutoencoderKL, ControlNetModel, UNet2DConditionModel
|
30 |
+
from ...schedulers import KarrasDiffusionSchedulers
|
31 |
+
|
32 |
+
from ...utils import (
|
33 |
+
PIL_INTERPOLATION,
|
34 |
+
is_accelerate_available,
|
35 |
+
is_accelerate_version,
|
36 |
+
is_compiled_module,
|
37 |
+
logging,
|
38 |
+
randn_tensor,
|
39 |
+
replace_example_docstring,
|
40 |
+
)
|
41 |
+
from ..pipeline_utils import DiffusionPipeline
|
42 |
+
from ..stable_diffusion import StableDiffusionPipelineOutput
|
43 |
+
from ..stable_diffusion.safety_checker import StableDiffusionSafetyChecker
|
44 |
+
from .multicontrolnet import MultiControlNetModel
|
45 |
+
|
46 |
+
|
47 |
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
48 |
+
|
49 |
+
|
50 |
+
EXAMPLE_DOC_STRING = """
|
51 |
+
Examples:
|
52 |
+
```py
|
53 |
+
>>> # !pip install opencv-python transformers accelerate
|
54 |
+
>>> from diffusers import StableDiffusionControlNetImg2ImgPipeline, ControlNetModel, UniPCMultistepScheduler
|
55 |
+
>>> from diffusers.utils import load_image
|
56 |
+
>>> import numpy as np
|
57 |
+
>>> import torch
|
58 |
+
|
59 |
+
>>> import cv2
|
60 |
+
>>> from PIL import Image
|
61 |
+
|
62 |
+
>>> # download an image
|
63 |
+
>>> image = load_image(
|
64 |
+
... "https://hf.co/datasets/huggingface/documentation-images/resolve/main/diffusers/input_image_vermeer.png"
|
65 |
+
... )
|
66 |
+
>>> np_image = np.array(image)
|
67 |
+
|
68 |
+
>>> # get canny image
|
69 |
+
>>> np_image = cv2.Canny(np_image, 100, 200)
|
70 |
+
>>> np_image = np_image[:, :, None]
|
71 |
+
>>> np_image = np.concatenate([np_image, np_image, np_image], axis=2)
|
72 |
+
>>> canny_image = Image.fromarray(np_image)
|
73 |
+
|
74 |
+
>>> # load control net and stable diffusion v1-5
|
75 |
+
>>> controlnet = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-canny", torch_dtype=torch.float16)
|
76 |
+
>>> pipe = StableDiffusionControlNetImg2ImgPipeline.from_pretrained(
|
77 |
+
... "runwayml/stable-diffusion-v1-5", controlnet=controlnet, torch_dtype=torch.float16
|
78 |
+
... )
|
79 |
+
|
80 |
+
>>> # speed up diffusion process with faster scheduler and memory optimization
|
81 |
+
>>> pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config)
|
82 |
+
>>> pipe.enable_model_cpu_offload()
|
83 |
+
|
84 |
+
>>> # generate image
|
85 |
+
>>> generator = torch.manual_seed(0)
|
86 |
+
>>> image = pipe(
|
87 |
+
... "futuristic-looking woman",
|
88 |
+
... num_inference_steps=20,
|
89 |
+
... generator=generator,
|
90 |
+
... image=image,
|
91 |
+
... control_image=canny_image,
|
92 |
+
... ).images[0]
|
93 |
+
```
|
94 |
+
"""
|
95 |
+
|
96 |
+
|
97 |
+
def prepare_mask_and_masked_image(image, mask, height, width, return_image=False):
|
98 |
+
"""
|
99 |
+
Prepares a pair (image, mask) to be consumed by the Stable Diffusion pipeline. This means that those inputs will be
|
100 |
+
converted to ``torch.Tensor`` with shapes ``batch x channels x height x width`` where ``channels`` is ``3`` for the
|
101 |
+
``image`` and ``1`` for the ``mask``.
|
102 |
+
|
103 |
+
The ``image`` will be converted to ``torch.float32`` and normalized to be in ``[-1, 1]``. The ``mask`` will be
|
104 |
+
binarized (``mask > 0.5``) and cast to ``torch.float32`` too.
|
105 |
+
|
106 |
+
Args:
|
107 |
+
image (Union[np.array, PIL.Image, torch.Tensor]): The image to inpaint.
|
108 |
+
It can be a ``PIL.Image``, or a ``height x width x 3`` ``np.array`` or a ``channels x height x width``
|
109 |
+
``torch.Tensor`` or a ``batch x channels x height x width`` ``torch.Tensor``.
|
110 |
+
mask (_type_): The mask to apply to the image, i.e. regions to inpaint.
|
111 |
+
It can be a ``PIL.Image``, or a ``height x width`` ``np.array`` or a ``1 x height x width``
|
112 |
+
``torch.Tensor`` or a ``batch x 1 x height x width`` ``torch.Tensor``.
|
113 |
+
|
114 |
+
|
115 |
+
Raises:
|
116 |
+
ValueError: ``torch.Tensor`` images should be in the ``[-1, 1]`` range. ValueError: ``torch.Tensor`` mask
|
117 |
+
should be in the ``[0, 1]`` range. ValueError: ``mask`` and ``image`` should have the same spatial dimensions.
|
118 |
+
TypeError: ``mask`` is a ``torch.Tensor`` but ``image`` is not
|
119 |
+
(ot the other way around).
|
120 |
+
|
121 |
+
Returns:
|
122 |
+
tuple[torch.Tensor]: The pair (mask, masked_image) as ``torch.Tensor`` with 4
|
123 |
+
dimensions: ``batch x channels x height x width``.
|
124 |
+
"""
|
125 |
+
|
126 |
+
if image is None:
|
127 |
+
raise ValueError("`image` input cannot be undefined.")
|
128 |
+
|
129 |
+
if mask is None:
|
130 |
+
raise ValueError("`mask_image` input cannot be undefined.")
|
131 |
+
|
132 |
+
if isinstance(image, torch.Tensor):
|
133 |
+
if not isinstance(mask, torch.Tensor):
|
134 |
+
raise TypeError(f"`image` is a torch.Tensor but `mask` (type: {type(mask)} is not")
|
135 |
+
|
136 |
+
# Batch single image
|
137 |
+
if image.ndim == 3:
|
138 |
+
assert image.shape[0] == 3, "Image outside a batch should be of shape (3, H, W)"
|
139 |
+
image = image.unsqueeze(0)
|
140 |
+
|
141 |
+
# Batch and add channel dim for single mask
|
142 |
+
if mask.ndim == 2:
|
143 |
+
mask = mask.unsqueeze(0).unsqueeze(0)
|
144 |
+
|
145 |
+
# Batch single mask or add channel dim
|
146 |
+
if mask.ndim == 3:
|
147 |
+
# Single batched mask, no channel dim or single mask not batched but channel dim
|
148 |
+
if mask.shape[0] == 1:
|
149 |
+
mask = mask.unsqueeze(0)
|
150 |
+
|
151 |
+
# Batched masks no channel dim
|
152 |
+
else:
|
153 |
+
mask = mask.unsqueeze(1)
|
154 |
+
|
155 |
+
assert image.ndim == 4 and mask.ndim == 4, "Image and Mask must have 4 dimensions"
|
156 |
+
assert image.shape[-2:] == mask.shape[-2:], "Image and Mask must have the same spatial dimensions"
|
157 |
+
assert image.shape[0] == mask.shape[0], "Image and Mask must have the same batch size"
|
158 |
+
|
159 |
+
# Check image is in [-1, 1]
|
160 |
+
if image.min() < -1 or image.max() > 1:
|
161 |
+
raise ValueError("Image should be in [-1, 1] range")
|
162 |
+
|
163 |
+
# Check mask is in [0, 1]
|
164 |
+
if mask.min() < 0 or mask.max() > 1:
|
165 |
+
raise ValueError("Mask should be in [0, 1] range")
|
166 |
+
|
167 |
+
# Binarize mask
|
168 |
+
mask[mask < 0.5] = 0
|
169 |
+
mask[mask >= 0.5] = 1
|
170 |
+
|
171 |
+
# Image as float32
|
172 |
+
image = image.to(dtype=torch.float32)
|
173 |
+
elif isinstance(mask, torch.Tensor):
|
174 |
+
raise TypeError(f"`mask` is a torch.Tensor but `image` (type: {type(image)} is not")
|
175 |
+
else:
|
176 |
+
# preprocess image
|
177 |
+
if isinstance(image, (PIL.Image.Image, np.ndarray)):
|
178 |
+
image = [image]
|
179 |
+
if isinstance(image, list) and isinstance(image[0], PIL.Image.Image):
|
180 |
+
# resize all images w.r.t passed height an width
|
181 |
+
image = [i.resize((width, height), resample=PIL.Image.LANCZOS) for i in image]
|
182 |
+
image = [np.array(i.convert("RGB"))[None, :] for i in image]
|
183 |
+
image = np.concatenate(image, axis=0)
|
184 |
+
elif isinstance(image, list) and isinstance(image[0], np.ndarray):
|
185 |
+
image = np.concatenate([i[None, :] for i in image], axis=0)
|
186 |
+
|
187 |
+
image = image.transpose(0, 3, 1, 2)
|
188 |
+
image = torch.from_numpy(image).to(dtype=torch.float32) / 127.5 - 1.0
|
189 |
+
|
190 |
+
# preprocess mask
|
191 |
+
if isinstance(mask, (PIL.Image.Image, np.ndarray)):
|
192 |
+
mask = [mask]
|
193 |
+
|
194 |
+
if isinstance(mask, list) and isinstance(mask[0], PIL.Image.Image):
|
195 |
+
mask = [i.resize((width, height), resample=PIL.Image.LANCZOS) for i in mask]
|
196 |
+
mask = np.concatenate([np.array(m.convert("L"))[None, None, :] for m in mask], axis=0)
|
197 |
+
mask = mask.astype(np.float32) / 255.0
|
198 |
+
elif isinstance(mask, list) and isinstance(mask[0], np.ndarray):
|
199 |
+
mask = np.concatenate([m[None, None, :] for m in mask], axis=0)
|
200 |
+
|
201 |
+
mask[mask < 0.5] = 0
|
202 |
+
mask[mask >= 0.5] = 1
|
203 |
+
mask = torch.from_numpy(mask)
|
204 |
+
|
205 |
+
masked_image = image * (mask < 0.5)
|
206 |
+
|
207 |
+
# n.b. ensure backwards compatibility as old function does not return image
|
208 |
+
if return_image:
|
209 |
+
return mask, masked_image, image
|
210 |
+
|
211 |
+
return mask, masked_image
|
212 |
+
|
213 |
+
|
214 |
+
class StableDiffusionControlNetImg2ImgPipeline(DiffusionPipeline, TextualInversionLoaderMixin):
|
215 |
+
r"""
|
216 |
+
Pipeline for text-to-image generation using Stable Diffusion with ControlNet guidance.
|
217 |
+
|
218 |
+
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the
|
219 |
+
library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)
|
220 |
+
|
221 |
+
In addition the pipeline inherits the following loading methods:
|
222 |
+
- *Textual-Inversion*: [`loaders.TextualInversionLoaderMixin.load_textual_inversion`]
|
223 |
+
|
224 |
+
Args:
|
225 |
+
vae ([`AutoencoderKL`]):
|
226 |
+
Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
|
227 |
+
text_encoder ([`CLIPTextModel`]):
|
228 |
+
Frozen text-encoder. Stable Diffusion uses the text portion of
|
229 |
+
[CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), specifically
|
230 |
+
the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant.
|
231 |
+
tokenizer (`CLIPTokenizer`):
|
232 |
+
Tokenizer of class
|
233 |
+
[CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer).
|
234 |
+
unet ([`UNet2DConditionModel`]): Conditional U-Net architecture to denoise the encoded image latents.
|
235 |
+
controlnet ([`ControlNetModel`] or `List[ControlNetModel]`):
|
236 |
+
Provides additional conditioning to the unet during the denoising process. If you set multiple ControlNets
|
237 |
+
as a list, the outputs from each ControlNet are added together to create one combined additional
|
238 |
+
conditioning.
|
239 |
+
scheduler ([`SchedulerMixin`]):
|
240 |
+
A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of
|
241 |
+
[`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
|
242 |
+
safety_checker ([`StableDiffusionSafetyChecker`]):
|
243 |
+
Classification module that estimates whether generated images could be considered offensive or harmful.
|
244 |
+
Please, refer to the [model card](https://huggingface.co/runwayml/stable-diffusion-v1-5) for details.
|
245 |
+
feature_extractor ([`CLIPImageProcessor`]):
|
246 |
+
Model that extracts features from generated images to be used as inputs for the `safety_checker`.
|
247 |
+
"""
|
248 |
+
_optional_components = ["safety_checker", "feature_extractor"]
|
249 |
+
|
250 |
+
def __init__(
|
251 |
+
self,
|
252 |
+
vae: AutoencoderKL,
|
253 |
+
text_encoder: CLIPTextModel,
|
254 |
+
tokenizer: CLIPTokenizer,
|
255 |
+
unet: UNet2DConditionModel,
|
256 |
+
controlnet: Union[ControlNetModel, List[ControlNetModel], Tuple[ControlNetModel], MultiControlNetModel],
|
257 |
+
scheduler: KarrasDiffusionSchedulers,
|
258 |
+
safety_checker: StableDiffusionSafetyChecker,
|
259 |
+
feature_extractor: CLIPImageProcessor,
|
260 |
+
requires_safety_checker: bool = True,
|
261 |
+
):
|
262 |
+
super().__init__()
|
263 |
+
|
264 |
+
if safety_checker is None and requires_safety_checker:
|
265 |
+
logger.warning(
|
266 |
+
f"You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure"
|
267 |
+
" that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered"
|
268 |
+
" results in services or applications open to the public. Both the diffusers team and Hugging Face"
|
269 |
+
" strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling"
|
270 |
+
" it only for use-cases that involve analyzing network behavior or auditing its results. For more"
|
271 |
+
" information, please have a look at https://github.com/huggingface/diffusers/pull/254 ."
|
272 |
+
)
|
273 |
+
|
274 |
+
if safety_checker is not None and feature_extractor is None:
|
275 |
+
raise ValueError(
|
276 |
+
"Make sure to define a feature extractor when loading {self.__class__} if you want to use the safety"
|
277 |
+
" checker. If you do not want to use the safety checker, you can pass `'safety_checker=None'` instead."
|
278 |
+
)
|
279 |
+
|
280 |
+
if isinstance(controlnet, (list, tuple)):
|
281 |
+
controlnet = MultiControlNetModel(controlnet)
|
282 |
+
|
283 |
+
self.register_modules(
|
284 |
+
vae=vae,
|
285 |
+
text_encoder=text_encoder,
|
286 |
+
tokenizer=tokenizer,
|
287 |
+
unet=unet,
|
288 |
+
controlnet=controlnet,
|
289 |
+
scheduler=scheduler,
|
290 |
+
safety_checker=safety_checker,
|
291 |
+
feature_extractor=feature_extractor,
|
292 |
+
)
|
293 |
+
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
|
294 |
+
self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor)
|
295 |
+
self.register_to_config(requires_safety_checker=requires_safety_checker)
|
296 |
+
|
297 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.enable_vae_slicing
|
298 |
+
def enable_vae_slicing(self):
|
299 |
+
r"""
|
300 |
+
Enable sliced VAE decoding.
|
301 |
+
|
302 |
+
When this option is enabled, the VAE will split the input tensor in slices to compute decoding in several
|
303 |
+
steps. This is useful to save some memory and allow larger batch sizes.
|
304 |
+
"""
|
305 |
+
self.vae.enable_slicing()
|
306 |
+
|
307 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.disable_vae_slicing
|
308 |
+
def disable_vae_slicing(self):
|
309 |
+
r"""
|
310 |
+
Disable sliced VAE decoding. If `enable_vae_slicing` was previously invoked, this method will go back to
|
311 |
+
computing decoding in one step.
|
312 |
+
"""
|
313 |
+
self.vae.disable_slicing()
|
314 |
+
|
315 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.enable_vae_tiling
|
316 |
+
def enable_vae_tiling(self):
|
317 |
+
r"""
|
318 |
+
Enable tiled VAE decoding.
|
319 |
+
|
320 |
+
When this option is enabled, the VAE will split the input tensor into tiles to compute decoding and encoding in
|
321 |
+
several steps. This is useful to save a large amount of memory and to allow the processing of larger images.
|
322 |
+
"""
|
323 |
+
self.vae.enable_tiling()
|
324 |
+
|
325 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.disable_vae_tiling
|
326 |
+
def disable_vae_tiling(self):
|
327 |
+
r"""
|
328 |
+
Disable tiled VAE decoding. If `enable_vae_tiling` was previously invoked, this method will go back to
|
329 |
+
computing decoding in one step.
|
330 |
+
"""
|
331 |
+
self.vae.disable_tiling()
|
332 |
+
|
333 |
+
def enable_sequential_cpu_offload(self, gpu_id=0):
|
334 |
+
r"""
|
335 |
+
Offloads all models to CPU using accelerate, significantly reducing memory usage. When called, unet,
|
336 |
+
text_encoder, vae, controlnet, and safety checker have their state dicts saved to CPU and then are moved to a
|
337 |
+
`torch.device('meta') and loaded to GPU only when their specific submodule has its `forward` method called.
|
338 |
+
Note that offloading happens on a submodule basis. Memory savings are higher than with
|
339 |
+
`enable_model_cpu_offload`, but performance is lower.
|
340 |
+
"""
|
341 |
+
if is_accelerate_available():
|
342 |
+
from accelerate import cpu_offload
|
343 |
+
else:
|
344 |
+
raise ImportError("Please install accelerate via `pip install accelerate`")
|
345 |
+
|
346 |
+
device = torch.device(f"cuda:{gpu_id}")
|
347 |
+
|
348 |
+
for cpu_offloaded_model in [self.unet, self.text_encoder, self.vae, self.controlnet]:
|
349 |
+
cpu_offload(cpu_offloaded_model, device)
|
350 |
+
|
351 |
+
if self.safety_checker is not None:
|
352 |
+
cpu_offload(self.safety_checker, execution_device=device, offload_buffers=True)
|
353 |
+
|
354 |
+
def enable_model_cpu_offload(self, gpu_id=0):
|
355 |
+
r"""
|
356 |
+
Offloads all models to CPU using accelerate, reducing memory usage with a low impact on performance. Compared
|
357 |
+
to `enable_sequential_cpu_offload`, this method moves one whole model at a time to the GPU when its `forward`
|
358 |
+
method is called, and the model remains in GPU until the next model runs. Memory savings are lower than with
|
359 |
+
`enable_sequential_cpu_offload`, but performance is much better due to the iterative execution of the `unet`.
|
360 |
+
"""
|
361 |
+
if is_accelerate_available() and is_accelerate_version(">=", "0.17.0.dev0"):
|
362 |
+
from accelerate import cpu_offload_with_hook
|
363 |
+
else:
|
364 |
+
raise ImportError("`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.")
|
365 |
+
|
366 |
+
device = torch.device(f"cuda:{gpu_id}")
|
367 |
+
|
368 |
+
hook = None
|
369 |
+
for cpu_offloaded_model in [self.text_encoder, self.unet, self.vae]:
|
370 |
+
_, hook = cpu_offload_with_hook(cpu_offloaded_model, device, prev_module_hook=hook)
|
371 |
+
|
372 |
+
if self.safety_checker is not None:
|
373 |
+
# the safety checker can offload the vae again
|
374 |
+
_, hook = cpu_offload_with_hook(self.safety_checker, device, prev_module_hook=hook)
|
375 |
+
|
376 |
+
# control net hook has be manually offloaded as it alternates with unet
|
377 |
+
cpu_offload_with_hook(self.controlnet, device)
|
378 |
+
|
379 |
+
# We'll offload the last model manually.
|
380 |
+
self.final_offload_hook = hook
|
381 |
+
|
382 |
+
@property
|
383 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device
|
384 |
+
def _execution_device(self):
|
385 |
+
r"""
|
386 |
+
Returns the device on which the pipeline's models will be executed. After calling
|
387 |
+
`pipeline.enable_sequential_cpu_offload()` the execution device can only be inferred from Accelerate's module
|
388 |
+
hooks.
|
389 |
+
"""
|
390 |
+
if not hasattr(self.unet, "_hf_hook"):
|
391 |
+
return self.device
|
392 |
+
for module in self.unet.modules():
|
393 |
+
if (
|
394 |
+
hasattr(module, "_hf_hook")
|
395 |
+
and hasattr(module._hf_hook, "execution_device")
|
396 |
+
and module._hf_hook.execution_device is not None
|
397 |
+
):
|
398 |
+
return torch.device(module._hf_hook.execution_device)
|
399 |
+
return self.device
|
400 |
+
|
401 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._encode_prompt
|
402 |
+
def _encode_prompt(
|
403 |
+
self,
|
404 |
+
prompt,
|
405 |
+
device,
|
406 |
+
num_images_per_prompt,
|
407 |
+
do_classifier_free_guidance,
|
408 |
+
negative_prompt=None,
|
409 |
+
prompt_embeds: Optional[torch.FloatTensor] = None,
|
410 |
+
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
|
411 |
+
):
|
412 |
+
r"""
|
413 |
+
Encodes the prompt into text encoder hidden states.
|
414 |
+
|
415 |
+
Args:
|
416 |
+
prompt (`str` or `List[str]`, *optional*):
|
417 |
+
prompt to be encoded
|
418 |
+
device: (`torch.device`):
|
419 |
+
torch device
|
420 |
+
num_images_per_prompt (`int`):
|
421 |
+
number of images that should be generated per prompt
|
422 |
+
do_classifier_free_guidance (`bool`):
|
423 |
+
whether to use classifier free guidance or not
|
424 |
+
negative_prompt (`str` or `List[str]`, *optional*):
|
425 |
+
The prompt or prompts not to guide the image generation. If not defined, one has to pass
|
426 |
+
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
|
427 |
+
less than `1`).
|
428 |
+
prompt_embeds (`torch.FloatTensor`, *optional*):
|
429 |
+
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
|
430 |
+
provided, text embeddings will be generated from `prompt` input argument.
|
431 |
+
negative_prompt_embeds (`torch.FloatTensor`, *optional*):
|
432 |
+
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
433 |
+
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
|
434 |
+
argument.
|
435 |
+
"""
|
436 |
+
if prompt is not None and isinstance(prompt, str):
|
437 |
+
batch_size = 1
|
438 |
+
elif prompt is not None and isinstance(prompt, list):
|
439 |
+
batch_size = len(prompt)
|
440 |
+
else:
|
441 |
+
batch_size = prompt_embeds.shape[0]
|
442 |
+
|
443 |
+
if prompt_embeds is None:
|
444 |
+
# textual inversion: procecss multi-vector tokens if necessary
|
445 |
+
if isinstance(self, TextualInversionLoaderMixin):
|
446 |
+
prompt = self.maybe_convert_prompt(prompt, self.tokenizer)
|
447 |
+
|
448 |
+
text_inputs = self.tokenizer(
|
449 |
+
prompt,
|
450 |
+
padding="max_length",
|
451 |
+
max_length=self.tokenizer.model_max_length,
|
452 |
+
truncation=True,
|
453 |
+
return_tensors="pt",
|
454 |
+
)
|
455 |
+
text_input_ids = text_inputs.input_ids
|
456 |
+
untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids
|
457 |
+
|
458 |
+
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(
|
459 |
+
text_input_ids, untruncated_ids
|
460 |
+
):
|
461 |
+
removed_text = self.tokenizer.batch_decode(
|
462 |
+
untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1]
|
463 |
+
)
|
464 |
+
logger.warning(
|
465 |
+
"The following part of your input was truncated because CLIP can only handle sequences up to"
|
466 |
+
f" {self.tokenizer.model_max_length} tokens: {removed_text}"
|
467 |
+
)
|
468 |
+
|
469 |
+
if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask:
|
470 |
+
attention_mask = text_inputs.attention_mask.to(device)
|
471 |
+
else:
|
472 |
+
attention_mask = None
|
473 |
+
|
474 |
+
prompt_embeds = self.text_encoder(
|
475 |
+
text_input_ids.to(device),
|
476 |
+
attention_mask=attention_mask,
|
477 |
+
)
|
478 |
+
prompt_embeds = prompt_embeds[0]
|
479 |
+
|
480 |
+
prompt_embeds = prompt_embeds.to(dtype=self.text_encoder.dtype, device=device)
|
481 |
+
|
482 |
+
bs_embed, seq_len, _ = prompt_embeds.shape
|
483 |
+
# duplicate text embeddings for each generation per prompt, using mps friendly method
|
484 |
+
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
|
485 |
+
prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1)
|
486 |
+
|
487 |
+
# get unconditional embeddings for classifier free guidance
|
488 |
+
if do_classifier_free_guidance and negative_prompt_embeds is None:
|
489 |
+
uncond_tokens: List[str]
|
490 |
+
if negative_prompt is None:
|
491 |
+
uncond_tokens = [""] * batch_size
|
492 |
+
elif prompt is not None and type(prompt) is not type(negative_prompt):
|
493 |
+
raise TypeError(
|
494 |
+
f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
|
495 |
+
f" {type(prompt)}."
|
496 |
+
)
|
497 |
+
elif isinstance(negative_prompt, str):
|
498 |
+
uncond_tokens = [negative_prompt]
|
499 |
+
elif batch_size != len(negative_prompt):
|
500 |
+
raise ValueError(
|
501 |
+
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
|
502 |
+
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
|
503 |
+
" the batch size of `prompt`."
|
504 |
+
)
|
505 |
+
else:
|
506 |
+
uncond_tokens = negative_prompt
|
507 |
+
|
508 |
+
# textual inversion: procecss multi-vector tokens if necessary
|
509 |
+
if isinstance(self, TextualInversionLoaderMixin):
|
510 |
+
uncond_tokens = self.maybe_convert_prompt(uncond_tokens, self.tokenizer)
|
511 |
+
|
512 |
+
max_length = prompt_embeds.shape[1]
|
513 |
+
uncond_input = self.tokenizer(
|
514 |
+
uncond_tokens,
|
515 |
+
padding="max_length",
|
516 |
+
max_length=max_length,
|
517 |
+
truncation=True,
|
518 |
+
return_tensors="pt",
|
519 |
+
)
|
520 |
+
|
521 |
+
if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask:
|
522 |
+
attention_mask = uncond_input.attention_mask.to(device)
|
523 |
+
else:
|
524 |
+
attention_mask = None
|
525 |
+
|
526 |
+
negative_prompt_embeds = self.text_encoder(
|
527 |
+
uncond_input.input_ids.to(device),
|
528 |
+
attention_mask=attention_mask,
|
529 |
+
)
|
530 |
+
negative_prompt_embeds = negative_prompt_embeds[0]
|
531 |
+
|
532 |
+
if do_classifier_free_guidance:
|
533 |
+
# duplicate unconditional embeddings for each generation per prompt, using mps friendly method
|
534 |
+
seq_len = negative_prompt_embeds.shape[1]
|
535 |
+
|
536 |
+
negative_prompt_embeds = negative_prompt_embeds.to(dtype=self.text_encoder.dtype, device=device)
|
537 |
+
|
538 |
+
negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1)
|
539 |
+
negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
|
540 |
+
|
541 |
+
# For classifier free guidance, we need to do two forward passes.
|
542 |
+
# Here we concatenate the unconditional and text embeddings into a single batch
|
543 |
+
# to avoid doing two forward passes
|
544 |
+
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds])
|
545 |
+
|
546 |
+
return prompt_embeds
|
547 |
+
|
548 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.run_safety_checker
|
549 |
+
def run_safety_checker(self, image, device, dtype):
|
550 |
+
if self.safety_checker is None:
|
551 |
+
has_nsfw_concept = None
|
552 |
+
else:
|
553 |
+
if torch.is_tensor(image):
|
554 |
+
feature_extractor_input = self.image_processor.postprocess(image, output_type="pil")
|
555 |
+
else:
|
556 |
+
feature_extractor_input = self.image_processor.numpy_to_pil(image)
|
557 |
+
safety_checker_input = self.feature_extractor(feature_extractor_input, return_tensors="pt").to(device)
|
558 |
+
image, has_nsfw_concept = self.safety_checker(
|
559 |
+
images=image, clip_input=safety_checker_input.pixel_values.to(dtype)
|
560 |
+
)
|
561 |
+
return image, has_nsfw_concept
|
562 |
+
|
563 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.decode_latents
|
564 |
+
def decode_latents(self, latents):
|
565 |
+
warnings.warn(
|
566 |
+
"The decode_latents method is deprecated and will be removed in a future version. Please"
|
567 |
+
" use VaeImageProcessor instead",
|
568 |
+
FutureWarning,
|
569 |
+
)
|
570 |
+
latents = 1 / self.vae.config.scaling_factor * latents
|
571 |
+
image = self.vae.decode(latents, return_dict=False)[0]
|
572 |
+
image = (image / 2 + 0.5).clamp(0, 1)
|
573 |
+
# we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16
|
574 |
+
image = image.cpu().permute(0, 2, 3, 1).float().numpy()
|
575 |
+
return image
|
576 |
+
|
577 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs
|
578 |
+
def prepare_extra_step_kwargs(self, generator, eta):
|
579 |
+
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
|
580 |
+
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
|
581 |
+
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
|
582 |
+
# and should be between [0, 1]
|
583 |
+
|
584 |
+
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
585 |
+
extra_step_kwargs = {}
|
586 |
+
if accepts_eta:
|
587 |
+
extra_step_kwargs["eta"] = eta
|
588 |
+
|
589 |
+
# check if the scheduler accepts generator
|
590 |
+
accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
591 |
+
if accepts_generator:
|
592 |
+
extra_step_kwargs["generator"] = generator
|
593 |
+
return extra_step_kwargs
|
594 |
+
|
595 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_img2img.StableDiffusionImg2ImgPipeline.get_timesteps
|
596 |
+
def get_timesteps(self, num_inference_steps, strength, device):
|
597 |
+
# get the original timestep using init_timestep
|
598 |
+
init_timestep = min(int(num_inference_steps * strength), num_inference_steps)
|
599 |
+
|
600 |
+
t_start = max(num_inference_steps - init_timestep, 0)
|
601 |
+
timesteps = self.scheduler.timesteps[t_start * self.scheduler.order :]
|
602 |
+
|
603 |
+
return timesteps, num_inference_steps - t_start
|
604 |
+
|
605 |
+
def check_inputs(
|
606 |
+
self,
|
607 |
+
prompt,
|
608 |
+
image,
|
609 |
+
height,
|
610 |
+
width,
|
611 |
+
callback_steps,
|
612 |
+
negative_prompt=None,
|
613 |
+
prompt_embeds=None,
|
614 |
+
negative_prompt_embeds=None,
|
615 |
+
controlnet_conditioning_scale=1.0,
|
616 |
+
):
|
617 |
+
if height % 8 != 0 or width % 8 != 0:
|
618 |
+
raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")
|
619 |
+
|
620 |
+
if (callback_steps is None) or (
|
621 |
+
callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0)
|
622 |
+
):
|
623 |
+
raise ValueError(
|
624 |
+
f"`callback_steps` has to be a positive integer but is {callback_steps} of type"
|
625 |
+
f" {type(callback_steps)}."
|
626 |
+
)
|
627 |
+
|
628 |
+
if prompt is not None and prompt_embeds is not None:
|
629 |
+
raise ValueError(
|
630 |
+
f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
|
631 |
+
" only forward one of the two."
|
632 |
+
)
|
633 |
+
elif prompt is None and prompt_embeds is None:
|
634 |
+
raise ValueError(
|
635 |
+
"Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
|
636 |
+
)
|
637 |
+
elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
|
638 |
+
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
|
639 |
+
|
640 |
+
if negative_prompt is not None and negative_prompt_embeds is not None:
|
641 |
+
raise ValueError(
|
642 |
+
f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:"
|
643 |
+
f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
|
644 |
+
)
|
645 |
+
|
646 |
+
if prompt_embeds is not None and negative_prompt_embeds is not None:
|
647 |
+
if prompt_embeds.shape != negative_prompt_embeds.shape:
|
648 |
+
raise ValueError(
|
649 |
+
"`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but"
|
650 |
+
f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`"
|
651 |
+
f" {negative_prompt_embeds.shape}."
|
652 |
+
)
|
653 |
+
|
654 |
+
# `prompt` needs more sophisticated handling when there are multiple
|
655 |
+
# conditionings.
|
656 |
+
if isinstance(self.controlnet, MultiControlNetModel):
|
657 |
+
if isinstance(prompt, list):
|
658 |
+
logger.warning(
|
659 |
+
f"You have {len(self.controlnet.nets)} ControlNets and you have passed {len(prompt)}"
|
660 |
+
" prompts. The conditionings will be fixed across the prompts."
|
661 |
+
)
|
662 |
+
|
663 |
+
# Check `image`
|
664 |
+
is_compiled = hasattr(F, "scaled_dot_product_attention") and isinstance(
|
665 |
+
self.controlnet, torch._dynamo.eval_frame.OptimizedModule
|
666 |
+
)
|
667 |
+
if (
|
668 |
+
isinstance(self.controlnet, ControlNetModel)
|
669 |
+
or is_compiled
|
670 |
+
and isinstance(self.controlnet._orig_mod, ControlNetModel)
|
671 |
+
):
|
672 |
+
self.check_image(image, prompt, prompt_embeds)
|
673 |
+
elif (
|
674 |
+
isinstance(self.controlnet, MultiControlNetModel)
|
675 |
+
or is_compiled
|
676 |
+
and isinstance(self.controlnet._orig_mod, MultiControlNetModel)
|
677 |
+
):
|
678 |
+
if not isinstance(image, list):
|
679 |
+
raise TypeError("For multiple controlnets: `image` must be type `list`")
|
680 |
+
|
681 |
+
# When `image` is a nested list:
|
682 |
+
# (e.g. [[canny_image_1, pose_image_1], [canny_image_2, pose_image_2]])
|
683 |
+
elif any(isinstance(i, list) for i in image):
|
684 |
+
raise ValueError("A single batch of multiple conditionings are supported at the moment.")
|
685 |
+
elif len(image) != len(self.controlnet.nets):
|
686 |
+
raise ValueError(
|
687 |
+
"For multiple controlnets: `image` must have the same length as the number of controlnets."
|
688 |
+
)
|
689 |
+
|
690 |
+
for image_ in image:
|
691 |
+
self.check_image(image_, prompt, prompt_embeds)
|
692 |
+
else:
|
693 |
+
assert False
|
694 |
+
|
695 |
+
# Check `controlnet_conditioning_scale`
|
696 |
+
if (
|
697 |
+
isinstance(self.controlnet, ControlNetModel)
|
698 |
+
or is_compiled
|
699 |
+
and isinstance(self.controlnet._orig_mod, ControlNetModel)
|
700 |
+
):
|
701 |
+
if not isinstance(controlnet_conditioning_scale, float):
|
702 |
+
raise TypeError("For single controlnet: `controlnet_conditioning_scale` must be type `float`.")
|
703 |
+
elif (
|
704 |
+
isinstance(self.controlnet, MultiControlNetModel)
|
705 |
+
or is_compiled
|
706 |
+
and isinstance(self.controlnet._orig_mod, MultiControlNetModel)
|
707 |
+
):
|
708 |
+
if isinstance(controlnet_conditioning_scale, list):
|
709 |
+
if any(isinstance(i, list) for i in controlnet_conditioning_scale):
|
710 |
+
raise ValueError("A single batch of multiple conditionings are supported at the moment.")
|
711 |
+
elif isinstance(controlnet_conditioning_scale, list) and len(controlnet_conditioning_scale) != len(
|
712 |
+
self.controlnet.nets
|
713 |
+
):
|
714 |
+
raise ValueError(
|
715 |
+
"For multiple controlnets: When `controlnet_conditioning_scale` is specified as `list`, it must have"
|
716 |
+
" the same length as the number of controlnets"
|
717 |
+
)
|
718 |
+
else:
|
719 |
+
assert False
|
720 |
+
|
721 |
+
def check_image(self, image, prompt, prompt_embeds):
|
722 |
+
image_is_pil = isinstance(image, PIL.Image.Image)
|
723 |
+
image_is_tensor = isinstance(image, torch.Tensor)
|
724 |
+
image_is_pil_list = isinstance(image, list) and isinstance(image[0], PIL.Image.Image)
|
725 |
+
image_is_tensor_list = isinstance(image, list) and isinstance(image[0], torch.Tensor)
|
726 |
+
|
727 |
+
if not image_is_pil and not image_is_tensor and not image_is_pil_list and not image_is_tensor_list:
|
728 |
+
raise TypeError(
|
729 |
+
"image must be passed and be one of PIL image, torch tensor, list of PIL images, or list of torch tensors"
|
730 |
+
)
|
731 |
+
|
732 |
+
if image_is_pil:
|
733 |
+
image_batch_size = 1
|
734 |
+
elif image_is_tensor:
|
735 |
+
image_batch_size = image.shape[0]
|
736 |
+
elif image_is_pil_list:
|
737 |
+
image_batch_size = len(image)
|
738 |
+
elif image_is_tensor_list:
|
739 |
+
image_batch_size = len(image)
|
740 |
+
|
741 |
+
if prompt is not None and isinstance(prompt, str):
|
742 |
+
prompt_batch_size = 1
|
743 |
+
elif prompt is not None and isinstance(prompt, list):
|
744 |
+
prompt_batch_size = len(prompt)
|
745 |
+
elif prompt_embeds is not None:
|
746 |
+
prompt_batch_size = prompt_embeds.shape[0]
|
747 |
+
|
748 |
+
if image_batch_size != 1 and image_batch_size != prompt_batch_size:
|
749 |
+
raise ValueError(
|
750 |
+
f"If image batch size is not 1, image batch size must be same as prompt batch size. image batch size: {image_batch_size}, prompt batch size: {prompt_batch_size}"
|
751 |
+
)
|
752 |
+
|
753 |
+
# Copied from diffusers.pipelines.controlnet.pipeline_controlnet.StableDiffusionControlNetPipeline.prepare_image
|
754 |
+
def prepare_control_image(
|
755 |
+
self,
|
756 |
+
image,
|
757 |
+
width,
|
758 |
+
height,
|
759 |
+
batch_size,
|
760 |
+
num_images_per_prompt,
|
761 |
+
device,
|
762 |
+
dtype,
|
763 |
+
do_classifier_free_guidance=False,
|
764 |
+
guess_mode=False,
|
765 |
+
):
|
766 |
+
if not isinstance(image, torch.Tensor):
|
767 |
+
if isinstance(image, PIL.Image.Image):
|
768 |
+
image = [image]
|
769 |
+
|
770 |
+
if isinstance(image[0], PIL.Image.Image):
|
771 |
+
images = []
|
772 |
+
|
773 |
+
for image_ in image:
|
774 |
+
image_ = image_.convert("RGB")
|
775 |
+
image_ = image_.resize((width, height), resample=PIL_INTERPOLATION["lanczos"])
|
776 |
+
image_ = np.array(image_)
|
777 |
+
image_ = image_[None, :]
|
778 |
+
images.append(image_)
|
779 |
+
|
780 |
+
image = images
|
781 |
+
|
782 |
+
image = np.concatenate(image, axis=0)
|
783 |
+
image = np.array(image).astype(np.float32) / 255.0
|
784 |
+
image = image.transpose(0, 3, 1, 2)
|
785 |
+
image = torch.from_numpy(image)
|
786 |
+
elif isinstance(image[0], torch.Tensor):
|
787 |
+
image = torch.cat(image, dim=0)
|
788 |
+
|
789 |
+
image_batch_size = image.shape[0]
|
790 |
+
|
791 |
+
if image_batch_size == 1:
|
792 |
+
repeat_by = batch_size
|
793 |
+
else:
|
794 |
+
# image batch size is the same as prompt batch size
|
795 |
+
repeat_by = num_images_per_prompt
|
796 |
+
|
797 |
+
image = image.repeat_interleave(repeat_by, dim=0)
|
798 |
+
|
799 |
+
image = image.to(device=device, dtype=dtype)
|
800 |
+
|
801 |
+
if do_classifier_free_guidance and not guess_mode:
|
802 |
+
image = torch.cat([image] * 2)
|
803 |
+
|
804 |
+
return image
|
805 |
+
|
806 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_img2img.StableDiffusionImg2ImgPipeline.get_timesteps
|
807 |
+
def get_timesteps(self, num_inference_steps, strength, device):
|
808 |
+
# get the original timestep using init_timestep
|
809 |
+
init_timestep = min(int(num_inference_steps * strength), num_inference_steps)
|
810 |
+
|
811 |
+
t_start = max(num_inference_steps - init_timestep, 0)
|
812 |
+
timesteps = self.scheduler.timesteps[t_start * self.scheduler.order :]
|
813 |
+
|
814 |
+
return timesteps, num_inference_steps - t_start
|
815 |
+
|
816 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_img2img.StableDiffusionImg2ImgPipeline.prepare_latents
|
817 |
+
def prepare_latents(
|
818 |
+
self,
|
819 |
+
batch_size,
|
820 |
+
num_channels_latents,
|
821 |
+
height,
|
822 |
+
width,
|
823 |
+
dtype,
|
824 |
+
device,
|
825 |
+
generator,
|
826 |
+
latents=None,
|
827 |
+
image=None,
|
828 |
+
timestep=None,
|
829 |
+
is_strength_max=True,
|
830 |
+
return_noise=False,
|
831 |
+
return_image_latents=False,
|
832 |
+
):
|
833 |
+
shape = (batch_size, num_channels_latents, height // self.vae_scale_factor, width // self.vae_scale_factor)
|
834 |
+
if isinstance(generator, list) and len(generator) != batch_size:
|
835 |
+
raise ValueError(
|
836 |
+
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
|
837 |
+
f" size of {batch_size}. Make sure the batch size matches the length of the generators."
|
838 |
+
)
|
839 |
+
|
840 |
+
if (image is None or timestep is None) and not is_strength_max:
|
841 |
+
raise ValueError(
|
842 |
+
"Since strength < 1. initial latents are to be initialised as a combination of Image + Noise."
|
843 |
+
"However, either the image or the noise timestep has not been provided."
|
844 |
+
)
|
845 |
+
|
846 |
+
if return_image_latents or (latents is None and not is_strength_max):
|
847 |
+
image = image.to(device=device, dtype=dtype)
|
848 |
+
image_latents = self._encode_vae_image(image=image, generator=generator)
|
849 |
+
|
850 |
+
if latents is None:
|
851 |
+
noise = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
|
852 |
+
# if strength is 1. then initialise the latents to noise, else initial to image + noise
|
853 |
+
latents = noise if is_strength_max else self.scheduler.add_noise(image_latents, noise, timestep)
|
854 |
+
# if pure noise then scale the initial latents by the Scheduler's init sigma
|
855 |
+
latents = latents * self.scheduler.init_noise_sigma if is_strength_max else latents
|
856 |
+
else:
|
857 |
+
noise = latents.to(device)
|
858 |
+
latents = noise * self.scheduler.init_noise_sigma
|
859 |
+
|
860 |
+
outputs = (latents,)
|
861 |
+
|
862 |
+
if return_noise:
|
863 |
+
outputs += (noise,)
|
864 |
+
|
865 |
+
if return_image_latents:
|
866 |
+
outputs += (image_latents,)
|
867 |
+
|
868 |
+
return outputs
|
869 |
+
|
870 |
+
def _default_height_width(self, height, width, image):
|
871 |
+
# NOTE: It is possible that a list of images have different
|
872 |
+
# dimensions for each image, so just checking the first image
|
873 |
+
# is not _exactly_ correct, but it is simple.
|
874 |
+
while isinstance(image, list):
|
875 |
+
image = image[0]
|
876 |
+
|
877 |
+
if height is None:
|
878 |
+
if isinstance(image, PIL.Image.Image):
|
879 |
+
height = image.height
|
880 |
+
elif isinstance(image, torch.Tensor):
|
881 |
+
height = image.shape[2]
|
882 |
+
|
883 |
+
height = (height // 8) * 8 # round down to nearest multiple of 8
|
884 |
+
|
885 |
+
if width is None:
|
886 |
+
if isinstance(image, PIL.Image.Image):
|
887 |
+
width = image.width
|
888 |
+
elif isinstance(image, torch.Tensor):
|
889 |
+
width = image.shape[3]
|
890 |
+
|
891 |
+
width = (width // 8) * 8 # round down to nearest multiple of 8
|
892 |
+
|
893 |
+
return height, width
|
894 |
+
|
895 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_inpaint.StableDiffusionInpaintPipeline.prepare_mask_latents
|
896 |
+
def prepare_mask_latents(
|
897 |
+
self, mask, masked_image, batch_size, height, width, dtype, device, generator, do_classifier_free_guidance
|
898 |
+
):
|
899 |
+
# resize the mask to latents shape as we concatenate the mask to the latents
|
900 |
+
# we do that before converting to dtype to avoid breaking in case we're using cpu_offload
|
901 |
+
# and half precision
|
902 |
+
mask = torch.nn.functional.interpolate(
|
903 |
+
mask, size=(height // self.vae_scale_factor, width // self.vae_scale_factor)
|
904 |
+
)
|
905 |
+
mask = mask.to(device=device, dtype=dtype)
|
906 |
+
|
907 |
+
masked_image = masked_image.to(device=device, dtype=dtype)
|
908 |
+
masked_image_latents = self._encode_vae_image(masked_image, generator=generator)
|
909 |
+
|
910 |
+
# duplicate mask and masked_image_latents for each generation per prompt, using mps friendly method
|
911 |
+
if mask.shape[0] < batch_size:
|
912 |
+
if not batch_size % mask.shape[0] == 0:
|
913 |
+
raise ValueError(
|
914 |
+
"The passed mask and the required batch size don't match. Masks are supposed to be duplicated to"
|
915 |
+
f" a total batch size of {batch_size}, but {mask.shape[0]} masks were passed. Make sure the number"
|
916 |
+
" of masks that you pass is divisible by the total requested batch size."
|
917 |
+
)
|
918 |
+
mask = mask.repeat(batch_size // mask.shape[0], 1, 1, 1)
|
919 |
+
if masked_image_latents.shape[0] < batch_size:
|
920 |
+
if not batch_size % masked_image_latents.shape[0] == 0:
|
921 |
+
raise ValueError(
|
922 |
+
"The passed images and the required batch size don't match. Images are supposed to be duplicated"
|
923 |
+
f" to a total batch size of {batch_size}, but {masked_image_latents.shape[0]} images were passed."
|
924 |
+
" Make sure the number of images that you pass is divisible by the total requested batch size."
|
925 |
+
)
|
926 |
+
masked_image_latents = masked_image_latents.repeat(batch_size // masked_image_latents.shape[0], 1, 1, 1)
|
927 |
+
|
928 |
+
mask = torch.cat([mask] * 2) if do_classifier_free_guidance else mask
|
929 |
+
masked_image_latents = (
|
930 |
+
torch.cat([masked_image_latents] * 2) if do_classifier_free_guidance else masked_image_latents
|
931 |
+
)
|
932 |
+
|
933 |
+
# aligning device to prevent device errors when concating it with the latent model input
|
934 |
+
masked_image_latents = masked_image_latents.to(device=device, dtype=dtype)
|
935 |
+
return mask, masked_image_latents
|
936 |
+
|
937 |
+
def _encode_vae_image(self, image: torch.Tensor, generator: torch.Generator):
|
938 |
+
if isinstance(generator, list):
|
939 |
+
image_latents = [
|
940 |
+
self.vae.encode(image[i : i + 1]).latent_dist.sample(generator=generator[i])
|
941 |
+
for i in range(image.shape[0])
|
942 |
+
]
|
943 |
+
image_latents = torch.cat(image_latents, dim=0)
|
944 |
+
else:
|
945 |
+
image_latents = self.vae.encode(image).latent_dist.sample(generator=generator)
|
946 |
+
|
947 |
+
image_latents = self.vae.config.scaling_factor * image_latents
|
948 |
+
|
949 |
+
return image_latents
|
950 |
+
|
951 |
+
# override DiffusionPipeline
|
952 |
+
def save_pretrained(
|
953 |
+
self,
|
954 |
+
save_directory: Union[str, os.PathLike],
|
955 |
+
safe_serialization: bool = False,
|
956 |
+
variant: Optional[str] = None,
|
957 |
+
):
|
958 |
+
if isinstance(self.controlnet, ControlNetModel):
|
959 |
+
super().save_pretrained(save_directory, safe_serialization, variant)
|
960 |
+
else:
|
961 |
+
raise NotImplementedError("Currently, the `save_pretrained()` is not implemented for Multi-ControlNet.")
|
962 |
+
|
963 |
+
@torch.no_grad()
|
964 |
+
@replace_example_docstring(EXAMPLE_DOC_STRING)
|
965 |
+
def __call__(
|
966 |
+
self,
|
967 |
+
prompt: Union[str, List[str]] = None,
|
968 |
+
image: Union[torch.FloatTensor, PIL.Image.Image, List[torch.FloatTensor], List[PIL.Image.Image]] = None,
|
969 |
+
mask_image: Union[torch.Tensor, PIL.Image.Image] = None,
|
970 |
+
control_image: Union[
|
971 |
+
torch.FloatTensor, PIL.Image.Image, List[torch.FloatTensor], List[PIL.Image.Image]
|
972 |
+
] = None,
|
973 |
+
height: Optional[int] = None,
|
974 |
+
width: Optional[int] = None,
|
975 |
+
strength: float = 0.8,
|
976 |
+
num_inference_steps: int = 50,
|
977 |
+
guidance_scale: float = 7.5,
|
978 |
+
negative_prompt: Optional[Union[str, List[str]]] = None,
|
979 |
+
num_images_per_prompt: Optional[int] = 1,
|
980 |
+
eta: float = 0.0,
|
981 |
+
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
982 |
+
latents: Optional[torch.FloatTensor] = None,
|
983 |
+
prompt_embeds: Optional[torch.FloatTensor] = None,
|
984 |
+
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
|
985 |
+
output_type: Optional[str] = "pil",
|
986 |
+
return_dict: bool = True,
|
987 |
+
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
|
988 |
+
callback_steps: int = 1,
|
989 |
+
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
990 |
+
controlnet_conditioning_scale: Union[float, List[float]] = 0.8,
|
991 |
+
guess_mode: bool = False,
|
992 |
+
):
|
993 |
+
r"""
|
994 |
+
Function invoked when calling the pipeline for generation.
|
995 |
+
|
996 |
+
Args:
|
997 |
+
prompt (`str` or `List[str]`, *optional*):
|
998 |
+
The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
|
999 |
+
instead.
|
1000 |
+
image (`torch.FloatTensor`, `PIL.Image.Image`, `List[torch.FloatTensor]`, `List[PIL.Image.Image]`,
|
1001 |
+
`List[List[torch.FloatTensor]]`, or `List[List[PIL.Image.Image]]`):
|
1002 |
+
The ControlNet input condition. ControlNet uses this input condition to generate guidance to Unet. If
|
1003 |
+
the type is specified as `Torch.FloatTensor`, it is passed to ControlNet as is. `PIL.Image.Image` can
|
1004 |
+
also be accepted as an image. The dimensions of the output image defaults to `image`'s dimensions. If
|
1005 |
+
height and/or width are passed, `image` is resized according to them. If multiple ControlNets are
|
1006 |
+
specified in init, images must be passed as a list such that each element of the list can be correctly
|
1007 |
+
batched for input to a single controlnet.
|
1008 |
+
height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
|
1009 |
+
The height in pixels of the generated image.
|
1010 |
+
width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
|
1011 |
+
The width in pixels of the generated image.
|
1012 |
+
num_inference_steps (`int`, *optional*, defaults to 50):
|
1013 |
+
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
|
1014 |
+
expense of slower inference.
|
1015 |
+
guidance_scale (`float`, *optional*, defaults to 7.5):
|
1016 |
+
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
|
1017 |
+
`guidance_scale` is defined as `w` of equation 2. of [Imagen
|
1018 |
+
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
|
1019 |
+
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
|
1020 |
+
usually at the expense of lower image quality.
|
1021 |
+
negative_prompt (`str` or `List[str]`, *optional*):
|
1022 |
+
The prompt or prompts not to guide the image generation. If not defined, one has to pass
|
1023 |
+
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
|
1024 |
+
less than `1`).
|
1025 |
+
num_images_per_prompt (`int`, *optional*, defaults to 1):
|
1026 |
+
The number of images to generate per prompt.
|
1027 |
+
eta (`float`, *optional*, defaults to 0.0):
|
1028 |
+
Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to
|
1029 |
+
[`schedulers.DDIMScheduler`], will be ignored for others.
|
1030 |
+
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
|
1031 |
+
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
|
1032 |
+
to make generation deterministic.
|
1033 |
+
latents (`torch.FloatTensor`, *optional*):
|
1034 |
+
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
|
1035 |
+
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
|
1036 |
+
tensor will ge generated by sampling using the supplied random `generator`.
|
1037 |
+
prompt_embeds (`torch.FloatTensor`, *optional*):
|
1038 |
+
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
|
1039 |
+
provided, text embeddings will be generated from `prompt` input argument.
|
1040 |
+
negative_prompt_embeds (`torch.FloatTensor`, *optional*):
|
1041 |
+
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
1042 |
+
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
|
1043 |
+
argument.
|
1044 |
+
output_type (`str`, *optional*, defaults to `"pil"`):
|
1045 |
+
The output format of the generate image. Choose between
|
1046 |
+
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
|
1047 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
1048 |
+
Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
|
1049 |
+
plain tuple.
|
1050 |
+
callback (`Callable`, *optional*):
|
1051 |
+
A function that will be called every `callback_steps` steps during inference. The function will be
|
1052 |
+
called with the following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`.
|
1053 |
+
callback_steps (`int`, *optional*, defaults to 1):
|
1054 |
+
The frequency at which the `callback` function will be called. If not specified, the callback will be
|
1055 |
+
called at every step.
|
1056 |
+
cross_attention_kwargs (`dict`, *optional*):
|
1057 |
+
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
|
1058 |
+
`self.processor` in
|
1059 |
+
[diffusers.cross_attention](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/cross_attention.py).
|
1060 |
+
controlnet_conditioning_scale (`float` or `List[float]`, *optional*, defaults to 1.0):
|
1061 |
+
The outputs of the controlnet are multiplied by `controlnet_conditioning_scale` before they are added
|
1062 |
+
to the residual in the original unet. If multiple ControlNets are specified in init, you can set the
|
1063 |
+
corresponding scale as a list. Note that by default, we use a smaller conditioning scale for inpainting
|
1064 |
+
than for [`~StableDiffusionControlNetPipeline.__call__`].
|
1065 |
+
guess_mode (`bool`, *optional*, defaults to `False`):
|
1066 |
+
In this mode, the ControlNet encoder will try best to recognize the content of the input image even if
|
1067 |
+
you remove all prompts. The `guidance_scale` between 3.0 and 5.0 is recommended.
|
1068 |
+
|
1069 |
+
Examples:
|
1070 |
+
|
1071 |
+
Returns:
|
1072 |
+
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`:
|
1073 |
+
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] if `return_dict` is True, otherwise a `tuple.
|
1074 |
+
When returning a tuple, the first element is a list with the generated images, and the second element is a
|
1075 |
+
list of `bool`s denoting whether the corresponding generated image likely represents "not-safe-for-work"
|
1076 |
+
(nsfw) content, according to the `safety_checker`.
|
1077 |
+
"""
|
1078 |
+
# 0. Default height and width to unet
|
1079 |
+
height, width = self._default_height_width(height, width, image)
|
1080 |
+
|
1081 |
+
# 1. Check inputs. Raise error if not correct
|
1082 |
+
self.check_inputs(
|
1083 |
+
prompt,
|
1084 |
+
control_image,
|
1085 |
+
height,
|
1086 |
+
width,
|
1087 |
+
callback_steps,
|
1088 |
+
negative_prompt,
|
1089 |
+
prompt_embeds,
|
1090 |
+
negative_prompt_embeds,
|
1091 |
+
controlnet_conditioning_scale,
|
1092 |
+
)
|
1093 |
+
|
1094 |
+
# 2. Define call parameters
|
1095 |
+
if prompt is not None and isinstance(prompt, str):
|
1096 |
+
batch_size = 1
|
1097 |
+
elif prompt is not None and isinstance(prompt, list):
|
1098 |
+
batch_size = len(prompt)
|
1099 |
+
else:
|
1100 |
+
batch_size = prompt_embeds.shape[0]
|
1101 |
+
|
1102 |
+
device = self._execution_device
|
1103 |
+
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
|
1104 |
+
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
|
1105 |
+
# corresponds to doing no classifier free guidance.
|
1106 |
+
do_classifier_free_guidance = guidance_scale > 1.0
|
1107 |
+
|
1108 |
+
controlnet = self.controlnet._orig_mod if is_compiled_module(self.controlnet) else self.controlnet
|
1109 |
+
|
1110 |
+
if isinstance(controlnet, MultiControlNetModel) and isinstance(controlnet_conditioning_scale, float):
|
1111 |
+
controlnet_conditioning_scale = [controlnet_conditioning_scale] * len(controlnet.nets)
|
1112 |
+
|
1113 |
+
global_pool_conditions = (
|
1114 |
+
controlnet.config.global_pool_conditions
|
1115 |
+
if isinstance(controlnet, ControlNetModel)
|
1116 |
+
else controlnet.nets[0].config.global_pool_conditions
|
1117 |
+
)
|
1118 |
+
guess_mode = guess_mode or global_pool_conditions
|
1119 |
+
|
1120 |
+
# 3. Encode input prompt
|
1121 |
+
prompt_embeds = self._encode_prompt(
|
1122 |
+
prompt,
|
1123 |
+
device,
|
1124 |
+
num_images_per_prompt,
|
1125 |
+
do_classifier_free_guidance,
|
1126 |
+
negative_prompt,
|
1127 |
+
prompt_embeds=prompt_embeds,
|
1128 |
+
negative_prompt_embeds=negative_prompt_embeds,
|
1129 |
+
)
|
1130 |
+
# 4. Prepare image, and controlnet_conditioning_image
|
1131 |
+
#image = prepare_image(image)
|
1132 |
+
|
1133 |
+
# 5. Prepare image
|
1134 |
+
if isinstance(controlnet, ControlNetModel):
|
1135 |
+
control_image = self.prepare_control_image(
|
1136 |
+
image=control_image,
|
1137 |
+
width=width,
|
1138 |
+
height=height,
|
1139 |
+
batch_size=batch_size * num_images_per_prompt,
|
1140 |
+
num_images_per_prompt=num_images_per_prompt,
|
1141 |
+
device=device,
|
1142 |
+
dtype=controlnet.dtype,
|
1143 |
+
do_classifier_free_guidance=do_classifier_free_guidance,
|
1144 |
+
guess_mode=guess_mode,
|
1145 |
+
)
|
1146 |
+
elif isinstance(controlnet, MultiControlNetModel):
|
1147 |
+
control_images = []
|
1148 |
+
|
1149 |
+
for control_image_ in control_image:
|
1150 |
+
control_image_ = self.prepare_control_image(
|
1151 |
+
image=control_image_,
|
1152 |
+
width=width,
|
1153 |
+
height=height,
|
1154 |
+
batch_size=batch_size * num_images_per_prompt,
|
1155 |
+
num_images_per_prompt=num_images_per_prompt,
|
1156 |
+
device=device,
|
1157 |
+
dtype=controlnet.dtype,
|
1158 |
+
do_classifier_free_guidance=do_classifier_free_guidance,
|
1159 |
+
guess_mode=guess_mode,
|
1160 |
+
)
|
1161 |
+
|
1162 |
+
control_images.append(control_image_)
|
1163 |
+
|
1164 |
+
control_image = control_images
|
1165 |
+
else:
|
1166 |
+
assert False
|
1167 |
+
|
1168 |
+
# 4. Preprocess mask and image - resizes image and mask w.r.t height and width
|
1169 |
+
mask, masked_image, init_image = prepare_mask_and_masked_image(
|
1170 |
+
image, mask_image, height, width, return_image=True
|
1171 |
+
)
|
1172 |
+
# 5. Prepare timesteps
|
1173 |
+
self.scheduler.set_timesteps(num_inference_steps, device=device)
|
1174 |
+
timesteps, num_inference_steps = self.get_timesteps(num_inference_steps, strength, device)
|
1175 |
+
latent_timestep = timesteps[:1].repeat(batch_size * num_images_per_prompt)
|
1176 |
+
|
1177 |
+
is_strength_max = strength == 1.0
|
1178 |
+
|
1179 |
+
# 6. Prepare latent variables
|
1180 |
+
num_channels_latents = self.vae.config.latent_channels
|
1181 |
+
num_channels_unet = self.unet.config.in_channels
|
1182 |
+
return_image_latents = num_channels_unet == 4
|
1183 |
+
latents_outputs = self.prepare_latents(
|
1184 |
+
batch_size * num_images_per_prompt,
|
1185 |
+
num_channels_latents,
|
1186 |
+
height,
|
1187 |
+
width,
|
1188 |
+
prompt_embeds.dtype,
|
1189 |
+
device,
|
1190 |
+
generator,
|
1191 |
+
latents,
|
1192 |
+
image=init_image,
|
1193 |
+
timestep=latent_timestep,
|
1194 |
+
is_strength_max=is_strength_max,
|
1195 |
+
return_noise=True,
|
1196 |
+
return_image_latents=return_image_latents,
|
1197 |
+
)
|
1198 |
+
|
1199 |
+
if return_image_latents:
|
1200 |
+
latents, noise, image_latents = latents_outputs
|
1201 |
+
else:
|
1202 |
+
latents, noise = latents_outputs
|
1203 |
+
|
1204 |
+
# 7. Prepare mask latent variables
|
1205 |
+
mask, masked_image_latents = self.prepare_mask_latents(
|
1206 |
+
mask,
|
1207 |
+
masked_image,
|
1208 |
+
batch_size * num_images_per_prompt,
|
1209 |
+
height,
|
1210 |
+
width,
|
1211 |
+
prompt_embeds.dtype,
|
1212 |
+
device,
|
1213 |
+
generator,
|
1214 |
+
do_classifier_free_guidance,
|
1215 |
+
)
|
1216 |
+
|
1217 |
+
# 7. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
|
1218 |
+
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
|
1219 |
+
|
1220 |
+
# 8. Denoising loop
|
1221 |
+
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
|
1222 |
+
with self.progress_bar(total=num_inference_steps) as progress_bar:
|
1223 |
+
for i, t in enumerate(timesteps):
|
1224 |
+
# expand the latents if we are doing classifier free guidance
|
1225 |
+
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
|
1226 |
+
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
|
1227 |
+
|
1228 |
+
# controlnet(s) inference
|
1229 |
+
if guess_mode and do_classifier_free_guidance:
|
1230 |
+
# Infer ControlNet only for the conditional batch.
|
1231 |
+
control_model_input = latents
|
1232 |
+
control_model_input = self.scheduler.scale_model_input(control_model_input, t)
|
1233 |
+
controlnet_prompt_embeds = prompt_embeds.chunk(2)[1]
|
1234 |
+
else:
|
1235 |
+
control_model_input = latent_model_input
|
1236 |
+
controlnet_prompt_embeds = prompt_embeds
|
1237 |
+
|
1238 |
+
down_block_res_samples, mid_block_res_sample = self.controlnet(
|
1239 |
+
control_model_input,
|
1240 |
+
t,
|
1241 |
+
encoder_hidden_states=controlnet_prompt_embeds,
|
1242 |
+
controlnet_cond=control_image,
|
1243 |
+
conditioning_scale=controlnet_conditioning_scale,
|
1244 |
+
guess_mode=guess_mode,
|
1245 |
+
return_dict=False,
|
1246 |
+
)
|
1247 |
+
|
1248 |
+
if guess_mode and do_classifier_free_guidance:
|
1249 |
+
# Infered ControlNet only for the conditional batch.
|
1250 |
+
# To apply the output of ControlNet to both the unconditional and conditional batches,
|
1251 |
+
# add 0 to the unconditional batch to keep it unchanged.
|
1252 |
+
down_block_res_samples = [torch.cat([torch.zeros_like(d), d]) for d in down_block_res_samples]
|
1253 |
+
mid_block_res_sample = torch.cat([torch.zeros_like(mid_block_res_sample), mid_block_res_sample])
|
1254 |
+
|
1255 |
+
|
1256 |
+
# predict the noise residual
|
1257 |
+
if num_channels_unet == 9:
|
1258 |
+
latent_model_input = torch.cat([latent_model_input, mask, masked_image_latents], dim=1)
|
1259 |
+
|
1260 |
+
# predict the noise residual
|
1261 |
+
noise_pred = self.unet(
|
1262 |
+
latent_model_input,
|
1263 |
+
t,
|
1264 |
+
encoder_hidden_states=prompt_embeds,
|
1265 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
1266 |
+
down_block_additional_residuals=down_block_res_samples,
|
1267 |
+
mid_block_additional_residual=mid_block_res_sample,
|
1268 |
+
return_dict=False,
|
1269 |
+
)[0]
|
1270 |
+
|
1271 |
+
# perform guidance
|
1272 |
+
if do_classifier_free_guidance:
|
1273 |
+
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
1274 |
+
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
|
1275 |
+
|
1276 |
+
# compute the previous noisy sample x_t -> x_t-1
|
1277 |
+
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0]
|
1278 |
+
|
1279 |
+
|
1280 |
+
if num_channels_unet == 4:
|
1281 |
+
init_latents_proper = image_latents[:1]
|
1282 |
+
init_mask = mask[:1]
|
1283 |
+
|
1284 |
+
if i < len(timesteps) - 1:
|
1285 |
+
init_latents_proper = self.scheduler.add_noise(init_latents_proper, noise, torch.tensor([t]))
|
1286 |
+
|
1287 |
+
latents = (1 - init_mask) * init_latents_proper + init_mask * latents
|
1288 |
+
|
1289 |
+
# call the callback, if provided
|
1290 |
+
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
|
1291 |
+
progress_bar.update()
|
1292 |
+
if callback is not None and i % callback_steps == 0:
|
1293 |
+
callback(i, t, latents)
|
1294 |
+
|
1295 |
+
# If we do sequential model offloading, let's offload unet and controlnet
|
1296 |
+
# manually for max memory savings
|
1297 |
+
if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None:
|
1298 |
+
self.unet.to("cpu")
|
1299 |
+
self.controlnet.to("cpu")
|
1300 |
+
torch.cuda.empty_cache()
|
1301 |
+
|
1302 |
+
if not output_type == "latent":
|
1303 |
+
image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0]
|
1304 |
+
image, has_nsfw_concept = self.run_safety_checker(image, device, prompt_embeds.dtype)
|
1305 |
+
else:
|
1306 |
+
image = latents
|
1307 |
+
has_nsfw_concept = None
|
1308 |
+
|
1309 |
+
if has_nsfw_concept is None:
|
1310 |
+
do_denormalize = [True] * image.shape[0]
|
1311 |
+
else:
|
1312 |
+
do_denormalize = [not has_nsfw for has_nsfw in has_nsfw_concept]
|
1313 |
+
|
1314 |
+
image = self.image_processor.postprocess(image, output_type=output_type, do_denormalize=do_denormalize)
|
1315 |
+
|
1316 |
+
# Offload last model to CPU
|
1317 |
+
if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None:
|
1318 |
+
self.final_offload_hook.offload()
|
1319 |
+
|
1320 |
+
if not return_dict:
|
1321 |
+
return (image, has_nsfw_concept)
|
1322 |
+
|
1323 |
+
return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept)
|