Spaces:
Build error
Build error
import streamlit as st | |
import urllib.request | |
import PIL.Image | |
from PIL import Image | |
import requests | |
import fastai | |
from fastai.vision import * | |
from fastai.utils.mem import * | |
from fastai.vision import open_image, load_learner, image, torch | |
import numpy as np | |
from urllib.request import urlretrieve | |
from io import BytesIO | |
import numpy as np | |
import torchvision.transforms as T | |
from PIL import Image,ImageOps,ImageFilter | |
from io import BytesIO | |
import os | |
class FeatureLoss(nn.Module): | |
def __init__(self, m_feat, layer_ids, layer_wgts): | |
super().__init__() | |
self.m_feat = m_feat | |
self.loss_features = [self.m_feat[i] for i in layer_ids] | |
self.hooks = hook_outputs(self.loss_features, detach=False) | |
self.wgts = layer_wgts | |
self.metric_names = ['pixel',] + [f'feat_{i}' for i in range(len(layer_ids)) | |
] + [f'gram_{i}' for i in range(len(layer_ids))] | |
def make_features(self, x, clone=False): | |
self.m_feat(x) | |
return [(o.clone() if clone else o) for o in self.hooks.stored] | |
def forward(self, input, target): | |
out_feat = self.make_features(target, clone=True) | |
in_feat = self.make_features(input) | |
self.feat_losses = [base_loss(input,target)] | |
self.feat_losses += [base_loss(f_in, f_out)*w | |
for f_in, f_out, w in zip(in_feat, out_feat, self.wgts)] | |
self.feat_losses += [base_loss(gram_matrix(f_in), gram_matrix(f_out))*w**2 * 5e3 | |
for f_in, f_out, w in zip(in_feat, out_feat, self.wgts)] | |
self.metrics = dict(zip(self.metric_names, self.feat_losses)) | |
return sum(self.feat_losses) | |
def __del__(self): self.hooks.remove() | |
def getNeighbours(i, j, n, m) : | |
arr = [] | |
if i-1 >= 0 and j-1 >= 0 : | |
arr.append((i-1, j-1)) | |
if i-1 >= 0 : | |
arr.append((i-1, j)) | |
if i-1 >= 0 and j+1 < m : | |
arr.append((i-1, j+1)) | |
if j+1 < m : | |
arr.append((i, j+1)) | |
if i+1 < n and j+1 < m : | |
arr.append((i+1, j+1)) | |
if i+1 < n : | |
arr.append((i+1, j)) | |
if i+1 < n and j-1 >= 0 : | |
arr.append((i+1, j-1)) | |
if j-1 >= 0 : | |
arr.append((i, j-1)) | |
return arr | |
MODEL_URL = "https://www.dropbox.com/s/05ong36r29h51ov/popd.pkl?dl=1" | |
urllib.request.urlretrieve(MODEL_URL, "popd.pkl") | |
path = Path(".") | |
learn=load_learner(path, 'popd.pkl') | |
def predict(image): | |
img_fast = open_image(image) | |
a = PIL.Image.open(image).convert('RGB') | |
p,img_hr,b = learn.predict(img_fast) | |
x = np.minimum(np.maximum(image2np(img_hr.data*255), 0), 255).astype(np.uint8) | |
img = PIL.Image.fromarray(x).convert('RGB') | |
size = a.size | |
im1 = img.resize(size) | |
membuf = BytesIO() | |
im1.save(membuf, format="png") | |
im = Image.open(membuf) | |
im = im.convert('RGBA') | |
data = np.array(im) # "data" is a height x width x 4 numpy array | |
red, green, blue, alpha = data.T # Temporarily unpack the bands for readability' | |
white_areas = (red == 0) & (blue == 0) & (green == 0) | |
data[..., :-1][white_areas.T] = (0,0,0) # Transpose back needed | |
im2 = Image.fromarray(data) | |
membuf = BytesIO() | |
im2.save(membuf, format="png") | |
img = Image.open(membuf) | |
bitmap = img.load() | |
n = img.size[0] | |
m = img.size[1] | |
stateMap = [] | |
for i in range(n): | |
stateMap.append([False for j in range(m)]) | |
queue = [(0, 0)] | |
while queue: | |
e = queue.pop(0) | |
i = e[0] | |
j = e[1] | |
if not stateMap[i][j]: | |
stateMap[i][j] = True | |
color = int((bitmap[i, j][0] + bitmap[i, j][1] + bitmap[i, j][2])/3) | |
if color > 100: | |
bitmap[i, j] =(185, 39, 40) | |
neigh = getNeighbours(i, j, n, m) | |
for ne in neigh: | |
queue.append(ne) | |
return st.image(img, caption='PoP ArT') | |
SIDEBAR_OPTION_DEMO_IMAGE = "Select a Demo Image" | |
SIDEBAR_OPTION_UPLOAD_IMAGE = "Upload an Image" | |
SIDEBAR_OPTIONS = [SIDEBAR_OPTION_DEMO_IMAGE, SIDEBAR_OPTION_UPLOAD_IMAGE] | |
app_mode = st.sidebar.selectbox("Please select from the following", SIDEBAR_OPTIONS) | |
if app_mode == SIDEBAR_OPTION_DEMO_IMAGE: | |
st.sidebar.write(" ------ ") | |
directory = os.path.join(Images) | |
photos = [] | |
for file in os.listdir(directory): | |
filepath = os.path.join(directory, file) | |
if imghdr.what(filepath) is not None: | |
photos.append(file) | |
photos.sort() | |
option = st.sidebar.selectbox('Please select a sample image, then click Magic Time button', photos) | |
pressed = st.sidebar.button('PoP') | |
if pressed: | |
st.empty() | |
t.sidebar.write('Please wait for the magic to happen! This may take up to a minute.') | |
pic = os.path.join(directory, option) | |
predict(pic) | |
elif app_mode == SIDEBAR_OPTION_UPLOAD_IMAGE: | |
uploaded_file = st.file_uploader("Choose an image...") | |
if uploaded_file is not None: | |
predict(uploaded_file) | |