PoPd-PoPArT / app.py
Vijish's picture
Update app.py
bf5d203
raw
history blame
4.77 kB
import streamlit as st
import urllib.request
import PIL.Image
from PIL import Image
import requests
import fastai
from fastai.vision import *
from fastai.utils.mem import *
from fastai.vision import open_image, load_learner, image, torch
import numpy as np
from urllib.request import urlretrieve
from io import BytesIO
import numpy as np
import torchvision.transforms as T
from PIL import Image,ImageOps,ImageFilter
from io import BytesIO
import os
class FeatureLoss(nn.Module):
def __init__(self, m_feat, layer_ids, layer_wgts):
super().__init__()
self.m_feat = m_feat
self.loss_features = [self.m_feat[i] for i in layer_ids]
self.hooks = hook_outputs(self.loss_features, detach=False)
self.wgts = layer_wgts
self.metric_names = ['pixel',] + [f'feat_{i}' for i in range(len(layer_ids))
] + [f'gram_{i}' for i in range(len(layer_ids))]
def make_features(self, x, clone=False):
self.m_feat(x)
return [(o.clone() if clone else o) for o in self.hooks.stored]
def forward(self, input, target):
out_feat = self.make_features(target, clone=True)
in_feat = self.make_features(input)
self.feat_losses = [base_loss(input,target)]
self.feat_losses += [base_loss(f_in, f_out)*w
for f_in, f_out, w in zip(in_feat, out_feat, self.wgts)]
self.feat_losses += [base_loss(gram_matrix(f_in), gram_matrix(f_out))*w**2 * 5e3
for f_in, f_out, w in zip(in_feat, out_feat, self.wgts)]
self.metrics = dict(zip(self.metric_names, self.feat_losses))
return sum(self.feat_losses)
def __del__(self): self.hooks.remove()
def getNeighbours(i, j, n, m) :
arr = []
if i-1 >= 0 and j-1 >= 0 :
arr.append((i-1, j-1))
if i-1 >= 0 :
arr.append((i-1, j))
if i-1 >= 0 and j+1 < m :
arr.append((i-1, j+1))
if j+1 < m :
arr.append((i, j+1))
if i+1 < n and j+1 < m :
arr.append((i+1, j+1))
if i+1 < n :
arr.append((i+1, j))
if i+1 < n and j-1 >= 0 :
arr.append((i+1, j-1))
if j-1 >= 0 :
arr.append((i, j-1))
return arr
MODEL_URL = "https://www.dropbox.com/s/05ong36r29h51ov/popd.pkl?dl=1"
urllib.request.urlretrieve(MODEL_URL, "popd.pkl")
path = Path(".")
learn=load_learner(path, 'popd.pkl')
def predict(image):
img_fast = open_image(image)
a = PIL.Image.open(image).convert('RGB')
p,img_hr,b = learn.predict(img_fast)
x = np.minimum(np.maximum(image2np(img_hr.data*255), 0), 255).astype(np.uint8)
img = PIL.Image.fromarray(x).convert('RGB')
size = a.size
im1 = img.resize(size)
membuf = BytesIO()
im1.save(membuf, format="png")
im = Image.open(membuf)
im = im.convert('RGBA')
data = np.array(im) # "data" is a height x width x 4 numpy array
red, green, blue, alpha = data.T # Temporarily unpack the bands for readability'
white_areas = (red == 0) & (blue == 0) & (green == 0)
data[..., :-1][white_areas.T] = (0,0,0) # Transpose back needed
im2 = Image.fromarray(data)
membuf = BytesIO()
im2.save(membuf, format="png")
img = Image.open(membuf)
bitmap = img.load()
n = img.size[0]
m = img.size[1]
stateMap = []
for i in range(n):
stateMap.append([False for j in range(m)])
queue = [(0, 0)]
while queue:
e = queue.pop(0)
i = e[0]
j = e[1]
if not stateMap[i][j]:
stateMap[i][j] = True
color = int((bitmap[i, j][0] + bitmap[i, j][1] + bitmap[i, j][2])/3)
if color > 100:
bitmap[i, j] =(185, 39, 40)
neigh = getNeighbours(i, j, n, m)
for ne in neigh:
queue.append(ne)
return st.image(img, caption='PoP ArT')
SIDEBAR_OPTION_DEMO_IMAGE = "Select a Demo Image"
SIDEBAR_OPTION_UPLOAD_IMAGE = "Upload an Image"
SIDEBAR_OPTIONS = [SIDEBAR_OPTION_DEMO_IMAGE, SIDEBAR_OPTION_UPLOAD_IMAGE]
app_mode = st.sidebar.selectbox("Please select from the following", SIDEBAR_OPTIONS)
if app_mode == SIDEBAR_OPTION_DEMO_IMAGE:
st.sidebar.write(" ------ ")
directory = os.path.join(Images)
photos = []
for file in os.listdir(directory):
filepath = os.path.join(directory, file)
if imghdr.what(filepath) is not None:
photos.append(file)
photos.sort()
option = st.sidebar.selectbox('Please select a sample image, then click Magic Time button', photos)
pressed = st.sidebar.button('PoP')
if pressed:
st.empty()
t.sidebar.write('Please wait for the magic to happen! This may take up to a minute.')
pic = os.path.join(directory, option)
predict(pic)
elif app_mode == SIDEBAR_OPTION_UPLOAD_IMAGE:
uploaded_file = st.file_uploader("Choose an image...")
if uploaded_file is not None:
predict(uploaded_file)