Syluh27
commited on
Commit
·
d76b078
1
Parent(s):
d530882
- app.py +17 -0
- model.py +35 -0
- requirements.txt +5 -0
app.py
ADDED
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from model import rag_chain
|
3 |
+
|
4 |
+
st.set_page_config(page_title="Chatbot Legal 🇪🇨", page_icon="⚖️")
|
5 |
+
|
6 |
+
st.title("🤖 Chatbot sobre el Código Penal de Ecuador ⚖️")
|
7 |
+
st.write("Este agente conversacional responde preguntas sobre las leyes del Código Penal ecuatoriano.")
|
8 |
+
|
9 |
+
user_input = st.text_input("✍️ Escribe tu pregunta:")
|
10 |
+
|
11 |
+
if st.button("🔎 Consultar"):
|
12 |
+
if user_input:
|
13 |
+
response = rag_chain.invoke({"query": user_input})
|
14 |
+
st.write("### 📜 Respuesta:")
|
15 |
+
st.write(response)
|
16 |
+
else:
|
17 |
+
st.warning("⚠️ Escribe una pregunta antes de consultar.")
|
model.py
ADDED
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from langchain.chains import RetrievalQA
|
2 |
+
from langchain.vectorstores import Chroma
|
3 |
+
from langchain.embeddings import HuggingFaceEmbeddings
|
4 |
+
from langchain.llms import ChatMistralAI
|
5 |
+
import chromadb
|
6 |
+
from huggingface_hub import hf_hub_download
|
7 |
+
import os
|
8 |
+
# Descargar los archivos de embeddings desde Hugging Face
|
9 |
+
embedding_path = hf_hub_download(repo_id="VictorCarr02/Conversational-Agent-LawsEC", filename="mis_embeddings")
|
10 |
+
chroma_path = hf_hub_download(repo_id="VictorCarr02/Conversational-Agent-LawsEC", filename="chroma/chroma.sqlite3")
|
11 |
+
|
12 |
+
# Cargar ChromaDB y los embeddings
|
13 |
+
chromadb_client = chromadb.PersistentClient(path=chroma_path)
|
14 |
+
collection = chromadb_client.get_or_create_collection(name="mis_embeddings")
|
15 |
+
embeddings = HuggingFaceEmbeddings(model_name="mistralai/MistralAIEmbeddings", path=embedding_path)
|
16 |
+
vector_store = Chroma(collection=collection, embedding_function=embeddings)
|
17 |
+
|
18 |
+
|
19 |
+
|
20 |
+
# Acceder a la clave API desde la variable de entorno
|
21 |
+
api_key = os.getenv("MISTRAL_API_KEY")
|
22 |
+
|
23 |
+
# Verifica si la clave fue obtenida correctamente
|
24 |
+
if api_key is None:
|
25 |
+
raise ValueError("La clave API MISTRAL_API_KEY no está configurada como variable de entorno.")
|
26 |
+
|
27 |
+
# Crear el modelo LLM con la clave API
|
28 |
+
llm = ChatMistralAI(api_key=api_key)
|
29 |
+
|
30 |
+
# Crear el agente RAG
|
31 |
+
rag_chain = RetrievalQA.from_chain_type(
|
32 |
+
llm=llm,
|
33 |
+
retriever=vector_store.as_retriever(),
|
34 |
+
chain_type="stuff"
|
35 |
+
)
|
requirements.txt
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
streamlit
|
2 |
+
langchain
|
3 |
+
chromadb
|
4 |
+
huggingface_hub
|
5 |
+
MistralAIEmbeddings
|