Vicky000 commited on
Commit
288cd8b
1 Parent(s): aa5afb8

Upload 2 files

Browse files
Files changed (2) hide show
  1. app.py +46 -0
  2. requirements(1).txt +2 -0
app.py ADDED
@@ -0,0 +1,46 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from fastai.vision.all import *
2
+ from io import BytesIO
3
+ import requests
4
+ import streamlit as st
5
+
6
+ """
7
+ # HeartNet
8
+ This is a classifier for images of 12-lead EKGs. It will attempt to detect whether the EKG indicates an acute MI. It was trained on simulated images.
9
+ """
10
+
11
+ def predict(img):
12
+ st.image(img, caption="Your image", use_column_width=True)
13
+ pred, key, probs = learn_inf.predict(img)
14
+ # st.write(learn_inf.predict(img))
15
+
16
+ f"""
17
+ ## This **{'is ' if pred == 'mi' else 'is not'}** an MI (heart attack).
18
+ ### Rediction result: {pred}
19
+ ### Probability of {pred}: {probs[key].item()*100: .2f}%
20
+ """
21
+
22
+
23
+ path = "./"
24
+ learn_inf = load_learner(path + "demo_model.pkl")
25
+
26
+ option = st.radio("", ["Upload Image", "Image URL"])
27
+
28
+ if option == "Upload Image":
29
+ uploaded_file = st.file_uploader("Please upload an image.")
30
+
31
+ if uploaded_file is not None:
32
+ img = PILImage.create(uploaded_file)
33
+ predict(img)
34
+
35
+ else:
36
+ url = st.text_input("Please input a url.")
37
+
38
+ if url != "":
39
+ try:
40
+ response = requests.get(url)
41
+ pil_img = PILImage.create(BytesIO(response.content))
42
+ predict(pil_img)
43
+
44
+ except:
45
+ st.text("Problem reading image from", url)
46
+
requirements(1).txt ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ fastbook
2
+ altair<5