Veda_Sahaja
commited on
Commit
•
e21e1ed
1
Parent(s):
070bee0
Update space
Browse files
app.py
CHANGED
@@ -1,7 +1,9 @@
|
|
1 |
import gradio as gr
|
2 |
import numpy as np
|
3 |
import random
|
4 |
-
from diffusers import StableDiffusionXLPipeline
|
|
|
|
|
5 |
import torch
|
6 |
from typing import Tuple
|
7 |
|
@@ -66,39 +68,39 @@ def apply_style(style_name: str, positive: str, negative: str = "") -> Tuple[str
|
|
66 |
p, n = styles.get(style_name, styles[DEFAULT_STYLE_NAME])
|
67 |
return p.replace("{prompt}", positive), n + negative
|
68 |
|
69 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
70 |
|
71 |
-
if torch.cuda.is_available():
|
72 |
-
# torch.cuda.max_memory_allocated(device=device)
|
73 |
-
pipe = StableDiffusionXLPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16, variant="fp16", use_safetensors=True)
|
74 |
-
# pipe.enable_xformers_memory_efficient_attention()
|
75 |
-
pipe = pipe.to(device)
|
76 |
-
# else:
|
77 |
-
# pipe = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0", use_safetensors=True)
|
78 |
-
# pipe = pipe.to(device)
|
79 |
|
80 |
MAX_SEED = np.iinfo(np.int32).max
|
81 |
MAX_IMAGE_SIZE = 1024
|
82 |
|
83 |
-
def infer(prompt, negative_prompt,
|
|
|
84 |
|
85 |
-
if randomize_seed:
|
86 |
-
seed = random.randint(0, MAX_SEED)
|
87 |
-
|
88 |
generator = torch.Generator().manual_seed(seed)
|
89 |
|
90 |
prompt, negative_prompt = apply_style(style_name, prompt, negative_prompt)
|
91 |
-
|
92 |
image = pipe(
|
93 |
-
prompt = prompt,
|
94 |
negative_prompt = negative_prompt,
|
95 |
-
guidance_scale = guidance_scale,
|
96 |
-
num_inference_steps = num_inference_steps,
|
97 |
-
width = width,
|
98 |
height = height,
|
99 |
generator = generator
|
100 |
-
).images[0]
|
101 |
-
|
102 |
return image
|
103 |
|
104 |
examples = [
|
@@ -120,15 +122,15 @@ else:
|
|
120 |
power_device = "CPU"
|
121 |
|
122 |
with gr.Blocks(css=css) as demo:
|
123 |
-
|
124 |
with gr.Column(elem_id="col-container"):
|
125 |
gr.Markdown(f"""
|
126 |
# Text-to-Image Gradio Template
|
127 |
Currently running on {power_device}.
|
128 |
""")
|
129 |
-
|
130 |
with gr.Row():
|
131 |
-
|
132 |
prompt = gr.Text(
|
133 |
label="Prompt",
|
134 |
show_label=False,
|
@@ -136,74 +138,55 @@ with gr.Blocks(css=css) as demo:
|
|
136 |
placeholder="Enter your prompt",
|
137 |
container=False,
|
138 |
)
|
139 |
-
|
140 |
run_button = gr.Button("Run", scale=0)
|
141 |
-
|
142 |
result = gr.Image(label="Result", show_label=False)
|
143 |
|
144 |
with gr.Accordion("Advanced Settings", open=False):
|
145 |
negative_prompt = gr.Textbox(
|
146 |
label="Negative prompt",
|
147 |
-
show_label=False,
|
148 |
max_lines=1,
|
149 |
placeholder="Enter a negative prompt",
|
150 |
-
elem_id="negative-prompt-text-input"
|
151 |
-
value="low-quality, text, blurry, fuzziness"
|
152 |
)
|
153 |
-
|
154 |
style_selection = gr.Radio(
|
155 |
show_label=True, container=True, interactive=True,
|
156 |
choices=STYLE_NAMES,
|
157 |
value=DEFAULT_STYLE_NAME,
|
158 |
label='Image Style'
|
159 |
)
|
160 |
-
|
161 |
-
seed = gr.Slider(
|
162 |
-
label="Seed",
|
163 |
-
minimum=0,
|
164 |
-
maximum=MAX_SEED,
|
165 |
-
step=1,
|
166 |
-
value=0,
|
167 |
-
)
|
168 |
-
|
169 |
-
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
170 |
-
|
171 |
with gr.Row():
|
172 |
-
|
173 |
width = gr.Slider(
|
174 |
label="Width",
|
175 |
minimum=256,
|
176 |
maximum=MAX_IMAGE_SIZE,
|
177 |
step=32,
|
178 |
-
value=
|
179 |
)
|
180 |
-
|
181 |
height = gr.Slider(
|
182 |
label="Height",
|
183 |
minimum=256,
|
184 |
maximum=MAX_IMAGE_SIZE,
|
185 |
step=32,
|
186 |
-
value=
|
187 |
)
|
188 |
-
|
189 |
with gr.Row():
|
190 |
-
|
191 |
guidance_scale = gr.Slider(
|
192 |
label="Guidance scale",
|
193 |
minimum=0.0,
|
194 |
-
maximum=
|
195 |
step=0.1,
|
196 |
-
value=
|
197 |
)
|
198 |
-
|
199 |
-
num_inference_steps = gr.Slider(
|
200 |
-
label="Number of inference steps",
|
201 |
-
minimum=1,
|
202 |
-
maximum=12,
|
203 |
-
step=1,
|
204 |
-
value=2,
|
205 |
-
)
|
206 |
-
|
207 |
gr.Examples(
|
208 |
examples = examples,
|
209 |
inputs = [prompt]
|
@@ -211,7 +194,7 @@ with gr.Blocks(css=css) as demo:
|
|
211 |
|
212 |
run_button.click(
|
213 |
fn = infer,
|
214 |
-
inputs = [prompt, negative_prompt,
|
215 |
outputs = [result]
|
216 |
)
|
217 |
|
|
|
1 |
import gradio as gr
|
2 |
import numpy as np
|
3 |
import random
|
4 |
+
from diffusers import StableDiffusionXLPipeline, LCMScheduler, UNet2DConditionModel, EulerDiscreteScheduler
|
5 |
+
from safetensors.torch import load_file
|
6 |
+
from huggingface_hub import hf_hub_download
|
7 |
import torch
|
8 |
from typing import Tuple
|
9 |
|
|
|
68 |
p, n = styles.get(style_name, styles[DEFAULT_STYLE_NAME])
|
69 |
return p.replace("{prompt}", positive), n + negative
|
70 |
|
71 |
+
base = "stabilityai/stable-diffusion-xl-base-1.0"
|
72 |
+
repo = "ByteDance/SDXL-Lightning"
|
73 |
+
ckpt = "sdxl_lightning_4step_unet.safetensors" # Use the correct ckpt for your step setting!
|
74 |
+
|
75 |
+
# Load model.
|
76 |
+
unet = UNet2DConditionModel.from_config(base, subfolder="unet").to("cuda", torch.float16)
|
77 |
+
unet.load_state_dict(load_file(hf_hub_download(repo, ckpt), device="cuda"))
|
78 |
+
pipe = StableDiffusionXLPipeline.from_pretrained(base, unet=unet, torch_dtype=torch.float16, variant="fp16").to("cuda")
|
79 |
+
|
80 |
+
# Ensure sampler uses "trailing" timesteps.
|
81 |
+
pipe.scheduler = EulerDiscreteScheduler.from_config(pipe.scheduler.config, timestep_spacing="trailing")
|
82 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
83 |
|
84 |
MAX_SEED = np.iinfo(np.int32).max
|
85 |
MAX_IMAGE_SIZE = 1024
|
86 |
|
87 |
+
def infer(prompt, negative_prompt, width, height, guidance_scale, style_name=None):
|
88 |
+
seed = random.randint(0,4294967295)
|
89 |
|
|
|
|
|
|
|
90 |
generator = torch.Generator().manual_seed(seed)
|
91 |
|
92 |
prompt, negative_prompt = apply_style(style_name, prompt, negative_prompt)
|
93 |
+
|
94 |
image = pipe(
|
95 |
+
prompt = prompt,
|
96 |
negative_prompt = negative_prompt,
|
97 |
+
guidance_scale = guidance_scale,
|
98 |
+
# num_inference_steps = num_inference_steps,
|
99 |
+
width = width,
|
100 |
height = height,
|
101 |
generator = generator
|
102 |
+
).images[0]
|
103 |
+
|
104 |
return image
|
105 |
|
106 |
examples = [
|
|
|
122 |
power_device = "CPU"
|
123 |
|
124 |
with gr.Blocks(css=css) as demo:
|
125 |
+
|
126 |
with gr.Column(elem_id="col-container"):
|
127 |
gr.Markdown(f"""
|
128 |
# Text-to-Image Gradio Template
|
129 |
Currently running on {power_device}.
|
130 |
""")
|
131 |
+
|
132 |
with gr.Row():
|
133 |
+
|
134 |
prompt = gr.Text(
|
135 |
label="Prompt",
|
136 |
show_label=False,
|
|
|
138 |
placeholder="Enter your prompt",
|
139 |
container=False,
|
140 |
)
|
141 |
+
|
142 |
run_button = gr.Button("Run", scale=0)
|
143 |
+
|
144 |
result = gr.Image(label="Result", show_label=False)
|
145 |
|
146 |
with gr.Accordion("Advanced Settings", open=False):
|
147 |
negative_prompt = gr.Textbox(
|
148 |
label="Negative prompt",
|
149 |
+
# show_label=False,
|
150 |
max_lines=1,
|
151 |
placeholder="Enter a negative prompt",
|
152 |
+
elem_id="negative-prompt-text-input"
|
|
|
153 |
)
|
154 |
+
|
155 |
style_selection = gr.Radio(
|
156 |
show_label=True, container=True, interactive=True,
|
157 |
choices=STYLE_NAMES,
|
158 |
value=DEFAULT_STYLE_NAME,
|
159 |
label='Image Style'
|
160 |
)
|
161 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
162 |
with gr.Row():
|
163 |
+
|
164 |
width = gr.Slider(
|
165 |
label="Width",
|
166 |
minimum=256,
|
167 |
maximum=MAX_IMAGE_SIZE,
|
168 |
step=32,
|
169 |
+
value=1024,
|
170 |
)
|
171 |
+
|
172 |
height = gr.Slider(
|
173 |
label="Height",
|
174 |
minimum=256,
|
175 |
maximum=MAX_IMAGE_SIZE,
|
176 |
step=32,
|
177 |
+
value=1024,
|
178 |
)
|
179 |
+
|
180 |
with gr.Row():
|
181 |
+
|
182 |
guidance_scale = gr.Slider(
|
183 |
label="Guidance scale",
|
184 |
minimum=0.0,
|
185 |
+
maximum=50.0,
|
186 |
step=0.1,
|
187 |
+
value=5,
|
188 |
)
|
189 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
190 |
gr.Examples(
|
191 |
examples = examples,
|
192 |
inputs = [prompt]
|
|
|
194 |
|
195 |
run_button.click(
|
196 |
fn = infer,
|
197 |
+
inputs = [prompt, negative_prompt, width, height, guidance_scale, style_selection],
|
198 |
outputs = [result]
|
199 |
)
|
200 |
|