Spaces:
Runtime error
Runtime error
# Copyright (c) Meta Platforms, Inc. and affiliates. | |
# All rights reserved. | |
# This source code is licensed under the license found in the | |
# LICENSE file in the root directory of this source tree. | |
""" | |
Sample new images from a pre-trained DiT. | |
""" | |
import os | |
import sys | |
import math | |
try: | |
import utils | |
from diffusion import create_diffusion | |
except: | |
# sys.path.append(os.getcwd()) | |
sys.path.append(os.path.split(sys.path[0])[0]) | |
# sys.path[0] | |
# os.path.split(sys.path[0]) | |
import utils | |
from diffusion import create_diffusion | |
import torch | |
torch.backends.cuda.matmul.allow_tf32 = True | |
torch.backends.cudnn.allow_tf32 = True | |
import argparse | |
import torchvision | |
from einops import rearrange | |
from models import get_models | |
from torchvision.utils import save_image | |
from diffusers.models import AutoencoderKL | |
from models.clip import TextEmbedder | |
from omegaconf import OmegaConf | |
from PIL import Image | |
import numpy as np | |
from torchvision import transforms | |
sys.path.append("..") | |
from datasets import video_transforms | |
from utils import mask_generation_before | |
from natsort import natsorted | |
from diffusers.utils.import_utils import is_xformers_available | |
from vlogger.STEB.model_transform import ip_scale_set, ip_transform_model, tca_transform_model | |
from transformers import CLIPVisionModelWithProjection, CLIPImageProcessor | |
def get_input(args): | |
input_path = args.input_path | |
transform_video = transforms.Compose([ | |
video_transforms.ToTensorVideo(), # TCHW | |
video_transforms.ResizeVideo((args.image_h, args.image_w)), | |
transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5], inplace=True) | |
]) | |
if input_path is not None: | |
print(f'loading video from {input_path}') | |
if os.path.isdir(input_path): | |
file_list = os.listdir(input_path) | |
video_frames = [] | |
if args.mask_type.startswith('onelast'): | |
num = int(args.mask_type.split('onelast')[-1]) | |
# get first and last frame | |
first_frame_path = os.path.join(input_path, natsorted(file_list)[0]) | |
last_frame_path = os.path.join(input_path, natsorted(file_list)[-1]) | |
first_frame = torch.as_tensor(np.array(Image.open(first_frame_path), dtype=np.uint8, copy=True)).unsqueeze(0) | |
last_frame = torch.as_tensor(np.array(Image.open(last_frame_path), dtype=np.uint8, copy=True)).unsqueeze(0) | |
for i in range(num): | |
video_frames.append(first_frame) | |
# add zeros to frames | |
num_zeros = args.num_frames-2*num | |
for i in range(num_zeros): | |
zeros = torch.zeros_like(first_frame) | |
video_frames.append(zeros) | |
for i in range(num): | |
video_frames.append(last_frame) | |
n = 0 | |
video_frames = torch.cat(video_frames, dim=0).permute(0, 3, 1, 2) # f,c,h,w | |
video_frames = transform_video(video_frames) | |
else: | |
for file in file_list: | |
if file.endswith('jpg') or file.endswith('png'): | |
image = torch.as_tensor(np.array(Image.open(file), dtype=np.uint8, copy=True)).unsqueeze(0) | |
video_frames.append(image) | |
else: | |
continue | |
n = 0 | |
video_frames = torch.cat(video_frames, dim=0).permute(0, 3, 1, 2) # f,c,h,w | |
video_frames = transform_video(video_frames) | |
return video_frames, n | |
elif os.path.isfile(input_path): | |
_, full_file_name = os.path.split(input_path) | |
file_name, extention = os.path.splitext(full_file_name) | |
if extention == '.jpg' or extention == '.png': | |
print("loading the input image") | |
video_frames = [] | |
num = int(args.mask_type.split('first')[-1]) | |
first_frame = torch.as_tensor(np.array(Image.open(input_path), dtype=np.uint8, copy=True)).unsqueeze(0) | |
for i in range(num): | |
video_frames.append(first_frame) | |
num_zeros = args.num_frames-num | |
for i in range(num_zeros): | |
zeros = torch.zeros_like(first_frame) | |
video_frames.append(zeros) | |
n = 0 | |
video_frames = torch.cat(video_frames, dim=0).permute(0, 3, 1, 2) # f,c,h,w | |
video_frames = transform_video(video_frames) | |
return video_frames, n | |
else: | |
raise TypeError(f'{extention} is not supported !!') | |
else: | |
raise ValueError('Please check your path input!!') | |
else: | |
raise ValueError('Need to give a video or some images') | |
def auto_inpainting(args, | |
video_input, | |
masked_video, | |
mask, | |
prompt, | |
image, | |
vae, | |
text_encoder, | |
image_encoder, | |
diffusion, | |
model, | |
device, | |
): | |
image_prompt_embeds = None | |
if prompt is None: | |
prompt = "" | |
if image is not None: | |
clip_image = CLIPImageProcessor()(images=image, return_tensors="pt").pixel_values | |
clip_image_embeds = image_encoder(clip_image.to(device)).image_embeds | |
uncond_clip_image_embeds = torch.zeros_like(clip_image_embeds).to(device) | |
image_prompt_embeds = torch.cat([clip_image_embeds, uncond_clip_image_embeds], dim=0) | |
image_prompt_embeds = rearrange(image_prompt_embeds, '(b n) c -> b n c', b=2).contiguous() | |
model = ip_scale_set(model, args.ref_cfg_scale) | |
if args.use_fp16: | |
image_prompt_embeds = image_prompt_embeds.to(dtype=torch.float16) | |
b, f, c, h, w = video_input.shape | |
latent_h = video_input.shape[-2] // 8 | |
latent_w = video_input.shape[-1] // 8 | |
if args.use_fp16: | |
z = torch.randn(1, 4, 16, latent_h, latent_w, dtype=torch.float16, device=device) # b,c,f,h,w | |
masked_video = masked_video.to(dtype=torch.float16) | |
mask = mask.to(dtype=torch.float16) | |
else: | |
z = torch.randn(1, 4, 16, latent_h, latent_w, device=device) # b,c,f,h,w | |
masked_video = rearrange(masked_video, 'b f c h w -> (b f) c h w').contiguous() | |
masked_video = vae.encode(masked_video).latent_dist.sample().mul_(0.18215) | |
masked_video = rearrange(masked_video, '(b f) c h w -> b c f h w', b=b).contiguous() | |
mask = torch.nn.functional.interpolate(mask[:,:,0,:], size=(latent_h, latent_w)).unsqueeze(1) | |
masked_video = torch.cat([masked_video] * 2) | |
mask = torch.cat([mask] * 2) | |
z = torch.cat([z] * 2) | |
prompt_all = [prompt] + [args.negative_prompt] | |
text_prompt = text_encoder(text_prompts=prompt_all, train=False) | |
model_kwargs = dict(encoder_hidden_states=text_prompt, | |
class_labels=None, | |
cfg_scale=args.cfg_scale, | |
use_fp16=args.use_fp16, | |
ip_hidden_states=image_prompt_embeds) | |
# Sample images: | |
samples = diffusion.ddim_sample_loop( | |
model.forward_with_cfg, z.shape, z, clip_denoised=False, model_kwargs=model_kwargs, progress=True, device=device, \ | |
mask=mask, x_start=masked_video, use_concat=True | |
) | |
samples, _ = samples.chunk(2, dim=0) # [1, 4, 16, 32, 32] | |
if args.use_fp16: | |
samples = samples.to(dtype=torch.float16) | |
video_clip = samples[0].permute(1, 0, 2, 3).contiguous() # [16, 4, 32, 32] | |
video_clip = vae.decode(video_clip / 0.18215).sample # [16, 3, 256, 256] | |
return video_clip | |
def main(args): | |
# Setup PyTorch: | |
if args.seed: | |
torch.manual_seed(args.seed) | |
torch.set_grad_enabled(False) | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
# device = "cpu" | |
if args.ckpt is None: | |
raise ValueError("Please specify a checkpoint path using --ckpt <path>") | |
# Load model: | |
latent_h = args.image_size[0] // 8 | |
latent_w = args.image_size[1] // 8 | |
args.image_h = args.image_size[0] | |
args.image_w = args.image_size[1] | |
args.latent_h = latent_h | |
args.latent_w = latent_w | |
print('loading model') | |
model = get_models(args).to(device) | |
model = tca_transform_model(model).to(device) | |
model = ip_transform_model(model).to(device) | |
if args.enable_xformers_memory_efficient_attention: | |
if is_xformers_available(): | |
model.enable_xformers_memory_efficient_attention() | |
else: | |
raise ValueError("xformers is not available. Make sure it is installed correctly") | |
# load model | |
ckpt_path = args.ckpt | |
state_dict = torch.load(ckpt_path, map_location=lambda storage, loc: storage)['ema'] | |
model_dict = model.state_dict() | |
pretrained_dict = {} | |
for k, v in state_dict.items(): | |
if k in model_dict: | |
pretrained_dict[k] = v | |
model_dict.update(pretrained_dict) | |
model.load_state_dict(model_dict) | |
model.eval() | |
pretrained_model_path = args.pretrained_model_path | |
diffusion = create_diffusion(str(args.num_sampling_steps)) | |
vae = AutoencoderKL.from_pretrained(pretrained_model_path, subfolder="vae").to(device) | |
text_encoder = TextEmbedder(pretrained_model_path).to(device) | |
image_encoder = CLIPVisionModelWithProjection.from_pretrained(args.image_encoder_path).to(device) | |
if args.use_fp16: | |
print('Warnning: using half percision for inferencing!') | |
vae.to(dtype=torch.float16) | |
model.to(dtype=torch.float16) | |
text_encoder.to(dtype=torch.float16) | |
# prompt: | |
prompt = args.text_prompt | |
if prompt ==[]: | |
prompt = args.input_path.split('/')[-1].split('.')[0].replace('_', ' ') | |
else: | |
prompt = prompt[0] | |
prompt_base = prompt.replace(' ','_') | |
prompt = prompt + args.additional_prompt | |
if not os.path.exists(os.path.join(args.save_path)): | |
os.makedirs(os.path.join(args.save_path)) | |
video_input, researve_frames = get_input(args) # f,c,h,w | |
video_input = video_input.to(device).unsqueeze(0) # b,f,c,h,w | |
mask = mask_generation_before(args.mask_type, video_input.shape, video_input.dtype, device) # b,f,c,h,w | |
masked_video = video_input * (mask == 0) | |
pil_image = Image.open(args.ref_path) | |
pil_image.resize((256, 256)) | |
video_clip = auto_inpainting(args, | |
video_input, | |
masked_video, | |
mask, | |
prompt, | |
pil_image, | |
vae, | |
text_encoder, | |
image_encoder, | |
diffusion, | |
model, | |
device, | |
) | |
video_ = ((video_clip * 0.5 + 0.5) * 255).add_(0.5).clamp_(0, 255).to(dtype=torch.uint8).cpu().permute(0, 2, 3, 1) | |
save_video_path = os.path.join(args.save_path, prompt_base+ '.mp4') | |
torchvision.io.write_video(save_video_path, video_, fps=8) | |
print(f'save in {save_video_path}') | |
if __name__ == "__main__": | |
parser = argparse.ArgumentParser() | |
parser.add_argument("--config", type=str, default="configs/with_mask_ref_sample.yaml") | |
args = parser.parse_args() | |
omega_conf = OmegaConf.load(args.config) | |
main(omega_conf) | |