Spaces:
Runtime error
Runtime error
# Adapted from https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention.py | |
import os | |
import sys | |
sys.path.append(os.path.split(sys.path[0])[0]) | |
from dataclasses import dataclass | |
from typing import Optional | |
import math | |
import torch | |
import torch.nn.functional as F | |
from torch import nn | |
from copy import deepcopy | |
from diffusers.configuration_utils import ConfigMixin, register_to_config | |
from diffusers.utils import BaseOutput | |
from diffusers.utils.import_utils import is_xformers_available | |
from diffusers.models.attention import FeedForward, AdaLayerNorm | |
from rotary_embedding_torch import RotaryEmbedding | |
from typing import Callable, Optional | |
from einops import rearrange, repeat | |
try: | |
from diffusers.models.modeling_utils import ModelMixin | |
except: | |
from diffusers.modeling_utils import ModelMixin # 0.11.1 | |
class Transformer3DModelOutput(BaseOutput): | |
sample: torch.FloatTensor | |
if is_xformers_available(): | |
import xformers | |
import xformers.ops | |
else: | |
xformers = None | |
def exists(x): | |
return x is not None | |
class CrossAttention(nn.Module): | |
r""" | |
copy from diffuser 0.11.1 | |
A cross attention layer. | |
Parameters: | |
query_dim (`int`): The number of channels in the query. | |
cross_attention_dim (`int`, *optional*): | |
The number of channels in the encoder_hidden_states. If not given, defaults to `query_dim`. | |
heads (`int`, *optional*, defaults to 8): The number of heads to use for multi-head attention. | |
dim_head (`int`, *optional*, defaults to 64): The number of channels in each head. | |
dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use. | |
bias (`bool`, *optional*, defaults to False): | |
Set to `True` for the query, key, and value linear layers to contain a bias parameter. | |
""" | |
def __init__( | |
self, | |
query_dim: int, | |
cross_attention_dim: Optional[int] = None, | |
heads: int = 8, | |
dim_head: int = 64, | |
dropout: float = 0.0, | |
bias=False, | |
upcast_attention: bool = False, | |
upcast_softmax: bool = False, | |
added_kv_proj_dim: Optional[int] = None, | |
norm_num_groups: Optional[int] = None, | |
use_relative_position: bool = False, | |
): | |
super().__init__() | |
# print('num head', heads) | |
inner_dim = dim_head * heads | |
cross_attention_dim = cross_attention_dim if cross_attention_dim is not None else query_dim | |
self.upcast_attention = upcast_attention | |
self.upcast_softmax = upcast_softmax | |
self.scale = dim_head**-0.5 | |
self.heads = heads | |
self.dim_head = dim_head | |
# for slice_size > 0 the attention score computation | |
# is split across the batch axis to save memory | |
# You can set slice_size with `set_attention_slice` | |
self.sliceable_head_dim = heads | |
self._slice_size = None | |
self._use_memory_efficient_attention_xformers = False | |
self.added_kv_proj_dim = added_kv_proj_dim | |
if norm_num_groups is not None: | |
self.group_norm = nn.GroupNorm(num_channels=inner_dim, num_groups=norm_num_groups, eps=1e-5, affine=True) | |
else: | |
self.group_norm = None | |
self.to_q = nn.Linear(query_dim, inner_dim, bias=bias) | |
self.to_k = nn.Linear(cross_attention_dim, inner_dim, bias=bias) | |
self.to_v = nn.Linear(cross_attention_dim, inner_dim, bias=bias) | |
if self.added_kv_proj_dim is not None: | |
self.add_k_proj = nn.Linear(added_kv_proj_dim, cross_attention_dim) | |
self.add_v_proj = nn.Linear(added_kv_proj_dim, cross_attention_dim) | |
self.to_out = nn.ModuleList([]) | |
self.to_out.append(nn.Linear(inner_dim, query_dim)) | |
self.to_out.append(nn.Dropout(dropout)) | |
# print(use_relative_position) | |
self.use_relative_position = use_relative_position | |
if self.use_relative_position: | |
self.rotary_emb = RotaryEmbedding(min(32, dim_head)) | |
self.ip_transformed = False | |
self.ip_scale = 1 | |
def ip_transform(self): | |
if self.ip_transformed is not True: | |
self.ip_to_k = deepcopy(self.to_k).to(next(self.parameters()).device) | |
self.ip_to_v = deepcopy(self.to_v).to(next(self.parameters()).device) | |
self.ip_transformed = True | |
def ip_train_set(self): | |
if self.ip_transformed is True: | |
self.ip_to_k.requires_grad_(True) | |
self.ip_to_v.requires_grad_(True) | |
def set_scale(self, scale): | |
self.ip_scale = scale | |
def reshape_heads_to_batch_dim(self, tensor): | |
batch_size, seq_len, dim = tensor.shape | |
head_size = self.heads | |
tensor = tensor.reshape(batch_size, seq_len, head_size, dim // head_size) | |
tensor = tensor.permute(0, 2, 1, 3).reshape(batch_size * head_size, seq_len, dim // head_size) | |
return tensor | |
def reshape_batch_dim_to_heads(self, tensor): | |
batch_size, seq_len, dim = tensor.shape | |
head_size = self.heads | |
tensor = tensor.reshape(batch_size // head_size, head_size, seq_len, dim) | |
tensor = tensor.permute(0, 2, 1, 3).reshape(batch_size // head_size, seq_len, dim * head_size) | |
return tensor | |
def reshape_for_scores(self, tensor): | |
# split heads and dims | |
# tensor should be [b (h w)] f (d nd) | |
batch_size, seq_len, dim = tensor.shape | |
head_size = self.heads | |
tensor = tensor.reshape(batch_size, seq_len, head_size, dim // head_size) | |
tensor = tensor.permute(0, 2, 1, 3).contiguous() | |
return tensor | |
def same_batch_dim_to_heads(self, tensor): | |
batch_size, head_size, seq_len, dim = tensor.shape # [b (h w)] nd f d | |
tensor = tensor.reshape(batch_size, seq_len, dim * head_size) | |
return tensor | |
def set_attention_slice(self, slice_size): | |
if slice_size is not None and slice_size > self.sliceable_head_dim: | |
raise ValueError(f"slice_size {slice_size} has to be smaller or equal to {self.sliceable_head_dim}.") | |
self._slice_size = slice_size | |
def forward(self, hidden_states, encoder_hidden_states=None, attention_mask=None, use_image_num=None, ip_hidden_states=None): | |
batch_size, sequence_length, _ = hidden_states.shape | |
encoder_hidden_states = encoder_hidden_states | |
if self.group_norm is not None: | |
hidden_states = self.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2) | |
query = self.to_q(hidden_states) # [b (h w)] f (nd * d) | |
dim = query.shape[-1] | |
if not self.use_relative_position: | |
query = self.reshape_heads_to_batch_dim(query) # [b (h w) nd] f d | |
if self.added_kv_proj_dim is not None: | |
key = self.to_k(hidden_states) | |
value = self.to_v(hidden_states) | |
encoder_hidden_states_key_proj = self.add_k_proj(encoder_hidden_states) | |
encoder_hidden_states_value_proj = self.add_v_proj(encoder_hidden_states) | |
key = self.reshape_heads_to_batch_dim(key) | |
value = self.reshape_heads_to_batch_dim(value) | |
encoder_hidden_states_key_proj = self.reshape_heads_to_batch_dim(encoder_hidden_states_key_proj) | |
encoder_hidden_states_value_proj = self.reshape_heads_to_batch_dim(encoder_hidden_states_value_proj) | |
key = torch.concat([encoder_hidden_states_key_proj, key], dim=1) | |
value = torch.concat([encoder_hidden_states_value_proj, value], dim=1) | |
else: | |
encoder_hidden_states = encoder_hidden_states if encoder_hidden_states is not None else hidden_states | |
key = self.to_k(encoder_hidden_states) | |
value = self.to_v(encoder_hidden_states) | |
if not self.use_relative_position: | |
key = self.reshape_heads_to_batch_dim(key) | |
value = self.reshape_heads_to_batch_dim(value) | |
if self.ip_transformed is True and ip_hidden_states is not None: | |
# print(ip_hidden_states.dtype) | |
# print(self.ip_to_k.weight.dtype) | |
ip_key = self.ip_to_k(ip_hidden_states) | |
ip_value = self.ip_to_v(ip_hidden_states) | |
if not self.use_relative_position: | |
ip_key = self.reshape_heads_to_batch_dim(ip_key) | |
ip_value = self.reshape_heads_to_batch_dim(ip_value) | |
if attention_mask is not None: | |
if attention_mask.shape[-1] != query.shape[1]: | |
target_length = query.shape[1] | |
attention_mask = F.pad(attention_mask, (0, target_length), value=0.0) | |
attention_mask = attention_mask.repeat_interleave(self.heads, dim=0) | |
# attention, what we cannot get enough of | |
if self._use_memory_efficient_attention_xformers: | |
hidden_states = self._memory_efficient_attention_xformers(query, key, value, attention_mask) | |
# Some versions of xformers return output in fp32, cast it back to the dtype of the input | |
hidden_states = hidden_states.to(query.dtype) | |
if self.ip_transformed is True and ip_hidden_states is not None: | |
ip_hidden_states = self._memory_efficient_attention_xformers(query, ip_key, ip_value, attention_mask) | |
ip_hidden_states = ip_hidden_states.to(query.dtype) | |
else: | |
if self._slice_size is None or query.shape[0] // self._slice_size == 1: | |
hidden_states = self._attention(query, key, value, attention_mask) | |
if self.ip_transformed is True and ip_hidden_states is not None: | |
ip_hidden_states = self._attention(query, ip_key, ip_value, attention_mask) | |
else: | |
hidden_states = self._sliced_attention(query, key, value, sequence_length, dim, attention_mask) | |
if self.ip_transformed is True and ip_hidden_states is not None: | |
ip_hidden_states = self._sliced_attention(query, ip_key, ip_value, sequence_length, dim, attention_mask) | |
if self.ip_transformed is True and ip_hidden_states is not None: | |
hidden_states = hidden_states + self.ip_scale * ip_hidden_states | |
# linear proj | |
hidden_states = self.to_out[0](hidden_states) | |
# dropout | |
hidden_states = self.to_out[1](hidden_states) | |
return hidden_states | |
def _attention(self, query, key, value, attention_mask=None): | |
if self.upcast_attention: | |
query = query.float() | |
key = key.float() | |
attention_scores = torch.baddbmm( | |
torch.empty(query.shape[0], query.shape[1], key.shape[1], dtype=query.dtype, device=query.device), | |
query, | |
key.transpose(-1, -2), | |
beta=0, | |
alpha=self.scale, | |
) | |
if attention_mask is not None: | |
attention_scores = attention_scores + attention_mask | |
if self.upcast_softmax: | |
attention_scores = attention_scores.float() | |
attention_probs = attention_scores.softmax(dim=-1) | |
attention_probs = attention_probs.to(value.dtype) | |
hidden_states = torch.bmm(attention_probs, value) | |
hidden_states = self.reshape_batch_dim_to_heads(hidden_states) | |
return hidden_states | |
def _sliced_attention(self, query, key, value, sequence_length, dim, attention_mask): | |
batch_size_attention = query.shape[0] | |
hidden_states = torch.zeros( | |
(batch_size_attention, sequence_length, dim // self.heads), device=query.device, dtype=query.dtype | |
) | |
slice_size = self._slice_size if self._slice_size is not None else hidden_states.shape[0] | |
for i in range(hidden_states.shape[0] // slice_size): | |
start_idx = i * slice_size | |
end_idx = (i + 1) * slice_size | |
query_slice = query[start_idx:end_idx] | |
key_slice = key[start_idx:end_idx] | |
if self.upcast_attention: | |
query_slice = query_slice.float() | |
key_slice = key_slice.float() | |
attn_slice = torch.baddbmm( | |
torch.empty(slice_size, query.shape[1], key.shape[1], dtype=query_slice.dtype, device=query.device), | |
query_slice, | |
key_slice.transpose(-1, -2), | |
beta=0, | |
alpha=self.scale, | |
) | |
if attention_mask is not None: | |
attn_slice = attn_slice + attention_mask[start_idx:end_idx] | |
if self.upcast_softmax: | |
attn_slice = attn_slice.float() | |
attn_slice = attn_slice.softmax(dim=-1) | |
# cast back to the original dtype | |
attn_slice = attn_slice.to(value.dtype) | |
attn_slice = torch.bmm(attn_slice, value[start_idx:end_idx]) | |
hidden_states[start_idx:end_idx] = attn_slice | |
# reshape hidden_states | |
hidden_states = self.reshape_batch_dim_to_heads(hidden_states) | |
return hidden_states | |
def _memory_efficient_attention_xformers(self, query, key, value, attention_mask): | |
# TODO attention_mask | |
query = query.contiguous() | |
key = key.contiguous() | |
value = value.contiguous() | |
hidden_states = xformers.ops.memory_efficient_attention(query, key, value, attn_bias=attention_mask) | |
hidden_states = self.reshape_batch_dim_to_heads(hidden_states) | |
return hidden_states | |
class Transformer3DModel(ModelMixin, ConfigMixin): | |
def __init__( | |
self, | |
num_attention_heads: int = 16, | |
attention_head_dim: int = 88, | |
in_channels: Optional[int] = None, | |
num_layers: int = 1, | |
dropout: float = 0.0, | |
norm_num_groups: int = 32, | |
cross_attention_dim: Optional[int] = None, | |
attention_bias: bool = False, | |
activation_fn: str = "geglu", | |
num_embeds_ada_norm: Optional[int] = None, | |
use_linear_projection: bool = False, | |
only_cross_attention: bool = False, | |
upcast_attention: bool = False, | |
use_first_frame: bool = False, | |
use_relative_position: bool = False, | |
rotary_emb: bool = None, | |
): | |
super().__init__() | |
self.use_linear_projection = use_linear_projection | |
self.num_attention_heads = num_attention_heads | |
self.attention_head_dim = attention_head_dim | |
inner_dim = num_attention_heads * attention_head_dim | |
# Define input layers | |
self.in_channels = in_channels | |
self.norm = torch.nn.GroupNorm(num_groups=norm_num_groups, num_channels=in_channels, eps=1e-6, affine=True) | |
if use_linear_projection: | |
self.proj_in = nn.Linear(in_channels, inner_dim) | |
else: | |
self.proj_in = nn.Conv2d(in_channels, inner_dim, kernel_size=1, stride=1, padding=0) | |
# Define transformers blocks | |
self.transformer_blocks = nn.ModuleList( | |
[ | |
BasicTransformerBlock( | |
inner_dim, | |
num_attention_heads, | |
attention_head_dim, | |
dropout=dropout, | |
cross_attention_dim=cross_attention_dim, | |
activation_fn=activation_fn, | |
num_embeds_ada_norm=num_embeds_ada_norm, | |
attention_bias=attention_bias, | |
only_cross_attention=only_cross_attention, | |
upcast_attention=upcast_attention, | |
use_first_frame=use_first_frame, | |
use_relative_position=use_relative_position, | |
rotary_emb=rotary_emb, | |
) | |
for d in range(num_layers) | |
] | |
) | |
# 4. Define output layers | |
if use_linear_projection: | |
self.proj_out = nn.Linear(in_channels, inner_dim) | |
else: | |
self.proj_out = nn.Conv2d(inner_dim, in_channels, kernel_size=1, stride=1, padding=0) | |
def forward(self, hidden_states, encoder_hidden_states=None, timestep=None, use_image_num=None, return_dict: bool = True, ip_hidden_states=None, encoder_temporal_hidden_states=None): | |
# Input | |
# if ip_hidden_states is not None: | |
# ip_hidden_states = ip_hidden_states.to(dtype=encoder_hidden_states.dtype) | |
# print(ip_hidden_states.shape) | |
# print(encoder_hidden_states.shape) | |
assert hidden_states.dim() == 5, f"Expected hidden_states to have ndim=5, but got ndim={hidden_states.dim()}." | |
if self.training: | |
video_length = hidden_states.shape[2] - use_image_num | |
hidden_states = rearrange(hidden_states, "b c f h w -> (b f) c h w").contiguous() | |
encoder_hidden_states_length = encoder_hidden_states.shape[1] | |
encoder_hidden_states_video = encoder_hidden_states[:, :encoder_hidden_states_length - use_image_num, ...] | |
encoder_hidden_states_video = repeat(encoder_hidden_states_video, 'b m n c -> b (m f) n c', f=video_length).contiguous() | |
encoder_hidden_states_image = encoder_hidden_states[:, encoder_hidden_states_length - use_image_num:, ...] | |
encoder_hidden_states = torch.cat([encoder_hidden_states_video, encoder_hidden_states_image], dim=1) | |
encoder_hidden_states = rearrange(encoder_hidden_states, 'b m n c -> (b m) n c').contiguous() | |
if ip_hidden_states is not None: | |
ip_hidden_states_length = ip_hidden_states.shape[1] | |
ip_hidden_states_video = ip_hidden_states[:, :ip_hidden_states_length - use_image_num, ...] | |
ip_hidden_states_video = repeat(ip_hidden_states_video, 'b m n c -> b (m f) n c', f=video_length).contiguous() | |
ip_hidden_states_image = ip_hidden_states[:, ip_hidden_states_length - use_image_num:, ...] | |
ip_hidden_states = torch.cat([ip_hidden_states_video, ip_hidden_states_image], dim=1) | |
ip_hidden_states = rearrange(ip_hidden_states, 'b m n c -> (b m) n c').contiguous() | |
else: | |
video_length = hidden_states.shape[2] | |
hidden_states = rearrange(hidden_states, "b c f h w -> (b f) c h w").contiguous() | |
encoder_hidden_states = repeat(encoder_hidden_states, 'b n c -> (b f) n c', f=video_length).contiguous() | |
if encoder_temporal_hidden_states is not None: | |
encoder_temporal_hidden_states = repeat(encoder_temporal_hidden_states, 'b n c -> (b f) n c', f=video_length).contiguous() | |
if ip_hidden_states is not None: | |
ip_hidden_states = repeat(ip_hidden_states, 'b 1 n c -> (b f) n c', f=video_length).contiguous() | |
batch, channel, height, weight = hidden_states.shape | |
residual = hidden_states | |
hidden_states = self.norm(hidden_states) | |
if not self.use_linear_projection: | |
hidden_states = self.proj_in(hidden_states) | |
inner_dim = hidden_states.shape[1] | |
hidden_states = hidden_states.permute(0, 2, 3, 1).reshape(batch, height * weight, inner_dim) | |
else: | |
inner_dim = hidden_states.shape[1] | |
hidden_states = hidden_states.permute(0, 2, 3, 1).reshape(batch, height * weight, inner_dim) | |
hidden_states = self.proj_in(hidden_states) | |
# Blocks | |
for block in self.transformer_blocks: | |
hidden_states = block( | |
hidden_states, | |
encoder_hidden_states=encoder_hidden_states, | |
timestep=timestep, | |
video_length=video_length, | |
use_image_num=use_image_num, | |
ip_hidden_states=ip_hidden_states, | |
encoder_temporal_hidden_states=encoder_temporal_hidden_states | |
) | |
# Output | |
if not self.use_linear_projection: | |
hidden_states = ( | |
hidden_states.reshape(batch, height, weight, inner_dim).permute(0, 3, 1, 2).contiguous() | |
) | |
hidden_states = self.proj_out(hidden_states) | |
else: | |
hidden_states = self.proj_out(hidden_states) | |
hidden_states = ( | |
hidden_states.reshape(batch, height, weight, inner_dim).permute(0, 3, 1, 2).contiguous() | |
) | |
output = hidden_states + residual | |
output = rearrange(output, "(b f) c h w -> b c f h w", f=video_length + use_image_num).contiguous() | |
if not return_dict: | |
return (output,) | |
return Transformer3DModelOutput(sample=output) | |
class BasicTransformerBlock(nn.Module): | |
def __init__( | |
self, | |
dim: int, | |
num_attention_heads: int, | |
attention_head_dim: int, | |
dropout=0.0, | |
cross_attention_dim: Optional[int] = None, | |
activation_fn: str = "geglu", | |
num_embeds_ada_norm: Optional[int] = None, | |
attention_bias: bool = False, | |
only_cross_attention: bool = False, | |
upcast_attention: bool = False, | |
use_first_frame: bool = False, | |
use_relative_position: bool = False, | |
rotary_emb: bool = False, | |
): | |
super().__init__() | |
self.only_cross_attention = only_cross_attention | |
# print(only_cross_attention) | |
self.use_ada_layer_norm = num_embeds_ada_norm is not None | |
# print(self.use_ada_layer_norm) | |
self.use_first_frame = use_first_frame | |
self.dim = dim | |
self.cross_attention_dim = cross_attention_dim | |
self.num_attention_heads = num_attention_heads | |
self.attention_head_dim = attention_head_dim | |
self.dropout = dropout | |
self.attention_bias = attention_bias | |
self.upcast_attention = upcast_attention | |
# Spatial-Attn | |
self.attn1 = CrossAttention( | |
query_dim=dim, | |
heads=num_attention_heads, | |
dim_head=attention_head_dim, | |
dropout=dropout, | |
bias=attention_bias, | |
cross_attention_dim=None, | |
upcast_attention=upcast_attention, | |
) | |
self.norm1 = AdaLayerNorm(dim, num_embeds_ada_norm) if self.use_ada_layer_norm else nn.LayerNorm(dim) | |
# Text Cross-Attn | |
if cross_attention_dim is not None: | |
self.attn2 = CrossAttention( | |
query_dim=dim, | |
cross_attention_dim=cross_attention_dim, | |
heads=num_attention_heads, | |
dim_head=attention_head_dim, | |
dropout=dropout, | |
bias=attention_bias, | |
upcast_attention=upcast_attention, | |
) | |
else: | |
self.attn2 = None | |
if cross_attention_dim is not None: | |
self.norm2 = AdaLayerNorm(dim, num_embeds_ada_norm) if self.use_ada_layer_norm else nn.LayerNorm(dim) | |
else: | |
self.norm2 = None | |
# Temp | |
self.attn_temp = TemporalAttention( | |
query_dim=dim, | |
heads=num_attention_heads, | |
dim_head=attention_head_dim, | |
dropout=dropout, | |
bias=attention_bias, | |
cross_attention_dim=None, | |
upcast_attention=upcast_attention, | |
rotary_emb=rotary_emb, | |
) | |
self.norm_temp = AdaLayerNorm(dim, num_embeds_ada_norm) if self.use_ada_layer_norm else nn.LayerNorm(dim) | |
nn.init.zeros_(self.attn_temp.to_out[0].weight.data) | |
# Feed-forward | |
self.ff = FeedForward(dim, dropout=dropout, activation_fn=activation_fn) | |
self.norm3 = nn.LayerNorm(dim) | |
self.tca_transformed = False | |
def tca_transform(self): | |
if self.tca_transformed is not True: | |
self.cross_attn_temp = CrossAttention( | |
query_dim=self.dim * 16, | |
cross_attention_dim=self.cross_attention_dim, | |
heads=self.num_attention_heads, | |
dim_head=self.attention_head_dim, | |
dropout=self.dropout, | |
bias=self.attention_bias, | |
upcast_attention=self.upcast_attention, | |
) | |
self.cross_norm_temp = AdaLayerNorm(self.dim * 16, self.num_embeds_ada_norm) if self.use_ada_layer_norm else nn.LayerNorm(self.dim * 16) | |
nn.init.zeros_(self.cross_attn_temp.to_out[0].weight.data) | |
self.tca_transformed = True | |
def set_use_memory_efficient_attention_xformers(self, use_memory_efficient_attention_xformers: bool, op=None): | |
if not is_xformers_available(): | |
print("Here is how to install it") | |
raise ModuleNotFoundError( | |
"Refer to https://github.com/facebookresearch/xformers for more information on how to install" | |
" xformers", | |
name="xformers", | |
) | |
elif not torch.cuda.is_available(): | |
raise ValueError( | |
"torch.cuda.is_available() should be True but is False. xformers' memory efficient attention is only" | |
" available for GPU " | |
) | |
else: | |
try: | |
# Make sure we can run the memory efficient attention | |
_ = xformers.ops.memory_efficient_attention( | |
torch.randn((1, 2, 40), device="cuda"), | |
torch.randn((1, 2, 40), device="cuda"), | |
torch.randn((1, 2, 40), device="cuda"), | |
) | |
except Exception as e: | |
raise e | |
self.attn1._use_memory_efficient_attention_xformers = use_memory_efficient_attention_xformers | |
if self.attn2 is not None: | |
self.attn2._use_memory_efficient_attention_xformers = use_memory_efficient_attention_xformers | |
def forward(self, hidden_states, encoder_hidden_states=None, timestep=None, attention_mask=None, video_length=None, use_image_num=None, ip_hidden_states=None, encoder_temporal_hidden_states=None): | |
# SparseCausal-Attention | |
norm_hidden_states = ( | |
self.norm1(hidden_states, timestep) if self.use_ada_layer_norm else self.norm1(hidden_states) | |
) | |
if self.only_cross_attention: | |
hidden_states = ( | |
self.attn1(norm_hidden_states, encoder_hidden_states, attention_mask=attention_mask) + hidden_states | |
) | |
else: | |
hidden_states = self.attn1(norm_hidden_states, attention_mask=attention_mask, use_image_num=use_image_num) + hidden_states | |
if self.attn2 is not None: | |
# Cross-Attention | |
norm_hidden_states = ( | |
self.norm2(hidden_states, timestep) if self.use_ada_layer_norm else self.norm2(hidden_states) | |
) | |
hidden_states = ( | |
self.attn2( | |
norm_hidden_states, encoder_hidden_states=encoder_hidden_states, attention_mask=attention_mask, ip_hidden_states=ip_hidden_states | |
) | |
+ hidden_states | |
) | |
# Temporal Attention | |
if self.training: | |
d = hidden_states.shape[1] | |
hidden_states = rearrange(hidden_states, "(b f) d c -> (b d) f c", f=video_length + use_image_num).contiguous() | |
hidden_states_video = hidden_states[:, :video_length, :] | |
hidden_states_image = hidden_states[:, video_length:, :] | |
norm_hidden_states_video = ( | |
self.norm_temp(hidden_states_video, timestep) if self.use_ada_layer_norm else self.norm_temp(hidden_states_video) | |
) | |
hidden_states_video = self.attn_temp(norm_hidden_states_video) + hidden_states_video | |
# Temporal Cross Attention | |
if self.tca_transformed is True: | |
hidden_states_video = rearrange(hidden_states_video, "(b d) f c -> b d (f c)", d=d).contiguous() | |
norm_hidden_states_video = ( | |
self.cross_norm_temp(hidden_states_video, timestep) if self.use_ada_layer_norm else self.cross_norm_temp(hidden_states_video) | |
) | |
temp_encoder_hidden_states = rearrange(encoder_hidden_states, "(b f) d c -> b f d c", f=video_length + use_image_num).contiguous() | |
temp_encoder_hidden_states = temp_encoder_hidden_states[:, 0:1].squeeze(dim=1) | |
hidden_states_video = self.cross_attn_temp(norm_hidden_states_video, encoder_hidden_states=temp_encoder_hidden_states, attention_mask=attention_mask) + hidden_states_video | |
hidden_states_video = rearrange(hidden_states_video, "b d (f c) -> (b d) f c", f=video_length).contiguous() | |
hidden_states = torch.cat([hidden_states_video, hidden_states_image], dim=1) | |
hidden_states = rearrange(hidden_states, "(b d) f c -> (b f) d c", d=d).contiguous() | |
else: | |
d = hidden_states.shape[1] | |
hidden_states = rearrange(hidden_states, "(b f) d c -> (b d) f c", f=video_length + use_image_num).contiguous() | |
norm_hidden_states = ( | |
self.norm_temp(hidden_states, timestep) if self.use_ada_layer_norm else self.norm_temp(hidden_states) | |
) | |
hidden_states = self.attn_temp(norm_hidden_states) + hidden_states | |
# Temporal Cross Attention | |
if self.tca_transformed is True: | |
hidden_states = rearrange(hidden_states, "(b d) f c -> b d (f c)", d=d).contiguous() | |
norm_hidden_states = ( | |
self.cross_norm_temp(hidden_states, timestep) if self.use_ada_layer_norm else self.cross_norm_temp(hidden_states) | |
) | |
if encoder_temporal_hidden_states is not None: | |
encoder_hidden_states = encoder_temporal_hidden_states | |
temp_encoder_hidden_states = rearrange(encoder_hidden_states, "(b f) d c -> b f d c", f=video_length + use_image_num).contiguous() | |
temp_encoder_hidden_states = temp_encoder_hidden_states[:, 0:1].squeeze(dim=1) | |
hidden_states = self.cross_attn_temp(norm_hidden_states, encoder_hidden_states=temp_encoder_hidden_states, attention_mask=attention_mask) + hidden_states | |
hidden_states = rearrange(hidden_states, "b d (f c) -> (b f) d c", f=video_length + use_image_num, d=d).contiguous() | |
else: | |
hidden_states = rearrange(hidden_states, "(b d) f c -> (b f) d c", d=d).contiguous() | |
# Feed-forward | |
hidden_states = self.ff(self.norm3(hidden_states)) + hidden_states | |
return hidden_states | |
class SparseCausalAttention(CrossAttention): | |
def forward_video(self, hidden_states, encoder_hidden_states=None, attention_mask=None, video_length=None): | |
batch_size, sequence_length, _ = hidden_states.shape | |
encoder_hidden_states = encoder_hidden_states | |
if self.group_norm is not None: | |
hidden_states = self.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2) | |
query = self.to_q(hidden_states) | |
dim = query.shape[-1] | |
query = self.reshape_heads_to_batch_dim(query) | |
if self.added_kv_proj_dim is not None: | |
raise NotImplementedError | |
encoder_hidden_states = encoder_hidden_states if encoder_hidden_states is not None else hidden_states | |
key = self.to_k(encoder_hidden_states) | |
value = self.to_v(encoder_hidden_states) | |
former_frame_index = torch.arange(video_length) - 1 | |
former_frame_index[0] = 0 | |
key = rearrange(key, "(b f) d c -> b f d c", f=video_length).contiguous() | |
key = torch.cat([key[:, [0] * video_length], key[:, former_frame_index]], dim=2) | |
key = rearrange(key, "b f d c -> (b f) d c").contiguous() | |
value = rearrange(value, "(b f) d c -> b f d c", f=video_length).contiguous() | |
value = torch.cat([value[:, [0] * video_length], value[:, former_frame_index]], dim=2) | |
value = rearrange(value, "b f d c -> (b f) d c").contiguous() | |
key = self.reshape_heads_to_batch_dim(key) | |
value = self.reshape_heads_to_batch_dim(value) | |
if attention_mask is not None: | |
if attention_mask.shape[-1] != query.shape[1]: | |
target_length = query.shape[1] | |
attention_mask = F.pad(attention_mask, (0, target_length), value=0.0) | |
attention_mask = attention_mask.repeat_interleave(self.heads, dim=0) | |
# attention, what we cannot get enough of | |
if self._use_memory_efficient_attention_xformers: | |
hidden_states = self._memory_efficient_attention_xformers(query, key, value, attention_mask) | |
# Some versions of xformers return output in fp32, cast it back to the dtype of the input | |
hidden_states = hidden_states.to(query.dtype) | |
else: | |
if self._slice_size is None or query.shape[0] // self._slice_size == 1: | |
hidden_states = self._attention(query, key, value, attention_mask) | |
else: | |
hidden_states = self._sliced_attention(query, key, value, sequence_length, dim, attention_mask) | |
# linear proj | |
hidden_states = self.to_out[0](hidden_states) | |
# dropout | |
hidden_states = self.to_out[1](hidden_states) | |
return hidden_states | |
def forward_image(self, hidden_states, encoder_hidden_states=None, attention_mask=None, use_image_num=None): | |
batch_size, sequence_length, _ = hidden_states.shape | |
encoder_hidden_states = encoder_hidden_states | |
if self.group_norm is not None: | |
hidden_states = self.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2) | |
query = self.to_q(hidden_states) # [b (h w)] f (nd * d) | |
dim = query.shape[-1] | |
if not self.use_relative_position: | |
query = self.reshape_heads_to_batch_dim(query) # [b (h w) nd] f d | |
if self.added_kv_proj_dim is not None: | |
key = self.to_k(hidden_states) | |
value = self.to_v(hidden_states) | |
encoder_hidden_states_key_proj = self.add_k_proj(encoder_hidden_states) | |
encoder_hidden_states_value_proj = self.add_v_proj(encoder_hidden_states) | |
key = self.reshape_heads_to_batch_dim(key) | |
value = self.reshape_heads_to_batch_dim(value) | |
encoder_hidden_states_key_proj = self.reshape_heads_to_batch_dim(encoder_hidden_states_key_proj) | |
encoder_hidden_states_value_proj = self.reshape_heads_to_batch_dim(encoder_hidden_states_value_proj) | |
key = torch.concat([encoder_hidden_states_key_proj, key], dim=1) | |
value = torch.concat([encoder_hidden_states_value_proj, value], dim=1) | |
else: | |
encoder_hidden_states = encoder_hidden_states if encoder_hidden_states is not None else hidden_states | |
key = self.to_k(encoder_hidden_states) | |
value = self.to_v(encoder_hidden_states) | |
if not self.use_relative_position: | |
key = self.reshape_heads_to_batch_dim(key) | |
value = self.reshape_heads_to_batch_dim(value) | |
if attention_mask is not None: | |
if attention_mask.shape[-1] != query.shape[1]: | |
target_length = query.shape[1] | |
attention_mask = F.pad(attention_mask, (0, target_length), value=0.0) | |
attention_mask = attention_mask.repeat_interleave(self.heads, dim=0) | |
# attention, what we cannot get enough of | |
if self._use_memory_efficient_attention_xformers: | |
hidden_states = self._memory_efficient_attention_xformers(query, key, value, attention_mask) | |
# Some versions of xformers return output in fp32, cast it back to the dtype of the input | |
hidden_states = hidden_states.to(query.dtype) | |
else: | |
if self._slice_size is None or query.shape[0] // self._slice_size == 1: | |
hidden_states = self._attention(query, key, value, attention_mask) | |
else: | |
hidden_states = self._sliced_attention(query, key, value, sequence_length, dim, attention_mask) | |
# linear proj | |
hidden_states = self.to_out[0](hidden_states) | |
# dropout | |
hidden_states = self.to_out[1](hidden_states) | |
return hidden_states | |
def forward(self, hidden_states, encoder_hidden_states=None, attention_mask=None, video_length=None, use_image_num=None): | |
if self.training: | |
# print(use_image_num) | |
hidden_states = rearrange(hidden_states, "(b f) d c -> b f d c", f=video_length + use_image_num).contiguous() | |
hidden_states_video = hidden_states[:, :video_length, ...] | |
hidden_states_image = hidden_states[:, video_length:, ...] | |
hidden_states_video = rearrange(hidden_states_video, 'b f d c -> (b f) d c').contiguous() | |
hidden_states_image = rearrange(hidden_states_image, 'b f d c -> (b f) d c').contiguous() | |
hidden_states_video = self.forward_video(hidden_states=hidden_states_video, | |
encoder_hidden_states=encoder_hidden_states, | |
attention_mask=attention_mask, | |
video_length=video_length) | |
hidden_states_image = self.forward_image(hidden_states=hidden_states_image, | |
encoder_hidden_states=encoder_hidden_states, | |
attention_mask=attention_mask) | |
hidden_states = torch.cat([hidden_states_video, hidden_states_image], dim=0) | |
return hidden_states | |
# exit() | |
else: | |
return self.forward_video(hidden_states=hidden_states, | |
encoder_hidden_states=encoder_hidden_states, | |
attention_mask=attention_mask, | |
video_length=video_length) | |
class TemporalAttention(CrossAttention): | |
def __init__(self, | |
query_dim: int, | |
cross_attention_dim: Optional[int] = None, | |
heads: int = 8, | |
dim_head: int = 64, | |
dropout: float = 0.0, | |
bias=False, | |
upcast_attention: bool = False, | |
upcast_softmax: bool = False, | |
added_kv_proj_dim: Optional[int] = None, | |
norm_num_groups: Optional[int] = None, | |
rotary_emb=None): | |
super().__init__(query_dim, cross_attention_dim, heads, dim_head, dropout, bias, upcast_attention, upcast_softmax, added_kv_proj_dim, norm_num_groups) | |
# relative time positional embeddings | |
self.time_rel_pos_bias = RelativePositionBias(heads=heads, max_distance=32) # realistically will not be able to generate that many frames of video... yet | |
self.rotary_emb = rotary_emb | |
def forward(self, hidden_states, encoder_hidden_states=None, attention_mask=None): | |
time_rel_pos_bias = self.time_rel_pos_bias(hidden_states.shape[1], device=hidden_states.device) | |
batch_size, sequence_length, _ = hidden_states.shape | |
encoder_hidden_states = encoder_hidden_states | |
if self.group_norm is not None: | |
hidden_states = self.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2) | |
query = self.to_q(hidden_states) # [b (h w)] f (nd * d) | |
dim = query.shape[-1] | |
if self.added_kv_proj_dim is not None: | |
key = self.to_k(hidden_states) | |
value = self.to_v(hidden_states) | |
encoder_hidden_states_key_proj = self.add_k_proj(encoder_hidden_states) | |
encoder_hidden_states_value_proj = self.add_v_proj(encoder_hidden_states) | |
key = self.reshape_heads_to_batch_dim(key) | |
value = self.reshape_heads_to_batch_dim(value) | |
encoder_hidden_states_key_proj = self.reshape_heads_to_batch_dim(encoder_hidden_states_key_proj) | |
encoder_hidden_states_value_proj = self.reshape_heads_to_batch_dim(encoder_hidden_states_value_proj) | |
key = torch.concat([encoder_hidden_states_key_proj, key], dim=1) | |
value = torch.concat([encoder_hidden_states_value_proj, value], dim=1) | |
else: | |
encoder_hidden_states = encoder_hidden_states if encoder_hidden_states is not None else hidden_states | |
key = self.to_k(encoder_hidden_states) | |
value = self.to_v(encoder_hidden_states) | |
if attention_mask is not None: | |
if attention_mask.shape[-1] != query.shape[1]: | |
target_length = query.shape[1] | |
attention_mask = F.pad(attention_mask, (0, target_length), value=0.0) | |
attention_mask = attention_mask.repeat_interleave(self.heads, dim=0) | |
# attention, what we cannot get enough of | |
if self._use_memory_efficient_attention_xformers: | |
hidden_states = self._memory_efficient_attention_xformers(query, key, value, attention_mask) | |
# Some versions of xformers return output in fp32, cast it back to the dtype of the input | |
hidden_states = hidden_states.to(query.dtype) | |
else: | |
if self._slice_size is None or query.shape[0] // self._slice_size == 1: | |
hidden_states = self._attention(query, key, value, attention_mask, time_rel_pos_bias) | |
else: | |
hidden_states = self._sliced_attention(query, key, value, sequence_length, dim, attention_mask) | |
# linear proj | |
hidden_states = self.to_out[0](hidden_states) | |
# dropout | |
hidden_states = self.to_out[1](hidden_states) | |
return hidden_states | |
def _attention(self, query, key, value, attention_mask=None, time_rel_pos_bias=None): | |
if self.upcast_attention: | |
query = query.float() | |
key = key.float() | |
query = self.scale * rearrange(query, 'b f (h d) -> b h f d', h=self.heads) # d: dim_head; n: heads | |
key = rearrange(key, 'b f (h d) -> b h f d', h=self.heads) # d: dim_head; n: heads | |
value = rearrange(value, 'b f (h d) -> b h f d', h=self.heads) # d: dim_head; n: heads | |
# torch.baddbmm only accepte 3-D tensor | |
# https://runebook.dev/zh/docs/pytorch/generated/torch.baddbmm | |
# attention_scores = self.scale * torch.matmul(query, key.transpose(-1, -2)) | |
if exists(self.rotary_emb): | |
query = self.rotary_emb.rotate_queries_or_keys(query) | |
key = self.rotary_emb.rotate_queries_or_keys(key) | |
attention_scores = torch.einsum('... h i d, ... h j d -> ... h i j', query, key) | |
attention_scores = attention_scores + time_rel_pos_bias | |
if attention_mask is not None: | |
# add attention mask | |
attention_scores = attention_scores + attention_mask | |
# vdm | |
attention_scores = attention_scores - attention_scores.amax(dim = -1, keepdim = True).detach() | |
attention_probs = nn.functional.softmax(attention_scores, dim=-1) | |
# print(attention_probs[0][0]) | |
# cast back to the original dtype | |
attention_probs = attention_probs.to(value.dtype) | |
# compute attention output | |
hidden_states = torch.einsum('... h i j, ... h j d -> ... h i d', attention_probs, value) | |
hidden_states = rearrange(hidden_states, 'b h f d -> b f (h d)') | |
return hidden_states | |
class RelativePositionBias(nn.Module): | |
def __init__( | |
self, | |
heads=8, | |
num_buckets=32, | |
max_distance=128, | |
): | |
super().__init__() | |
self.num_buckets = num_buckets | |
self.max_distance = max_distance | |
self.relative_attention_bias = nn.Embedding(num_buckets, heads) | |
def _relative_position_bucket(relative_position, num_buckets=32, max_distance=128): | |
ret = 0 | |
n = -relative_position | |
num_buckets //= 2 | |
ret += (n < 0).long() * num_buckets | |
n = torch.abs(n) | |
max_exact = num_buckets // 2 | |
is_small = n < max_exact | |
val_if_large = max_exact + ( | |
torch.log(n.float() / max_exact) / math.log(max_distance / max_exact) * (num_buckets - max_exact) | |
).long() | |
val_if_large = torch.min(val_if_large, torch.full_like(val_if_large, num_buckets - 1)) | |
ret += torch.where(is_small, n, val_if_large) | |
return ret | |
def forward(self, n, device): | |
q_pos = torch.arange(n, dtype = torch.long, device = device) | |
k_pos = torch.arange(n, dtype = torch.long, device = device) | |
rel_pos = rearrange(k_pos, 'j -> 1 j') - rearrange(q_pos, 'i -> i 1') | |
rp_bucket = self._relative_position_bucket(rel_pos, num_buckets = self.num_buckets, max_distance = self.max_distance) | |
values = self.relative_attention_bias(rp_bucket) | |
return rearrange(values, 'i j h -> h i j') # num_heads, num_frames, num_frames | |