Spaces:
Runtime error
Runtime error
import torch | |
import os | |
os.environ['CURL_CA_BUNDLE'] = '' | |
import argparse | |
from omegaconf import OmegaConf | |
from diffusers import DiffusionPipeline | |
from vlogger.planning_utils.gpt4_utils import (ExtractProtagonist, | |
ExtractAProtagonist, | |
split_story, | |
patch_story_scripts, | |
refine_story_scripts, | |
protagonist_place_reference1, | |
translate_video_script, | |
time_scripts, | |
) | |
def main(args): | |
story_path = args.story_path | |
save_script_path = os.path.join(story_path.rsplit('/', 1)[0], "script") | |
if not os.path.exists(save_script_path): | |
os.makedirs(save_script_path) | |
with open(story_path, "r") as story_file: | |
story = story_file.read() | |
# summerize protagonists and places | |
protagonists_places_file_path = os.path.join(save_script_path, "protagonists_places.txt") | |
if args.only_one_protagonist: | |
character_places = ExtractAProtagonist(story, protagonists_places_file_path) | |
else: | |
character_places = ExtractProtagonist(story, protagonists_places_file_path) | |
print("Protagonists and places OK", flush=True) | |
# make script | |
script_file_path = os.path.join(save_script_path, "video_prompts.txt") | |
video_list = split_story(story, script_file_path) | |
video_list = patch_story_scripts(story, video_list, script_file_path) | |
video_list = refine_story_scripts(video_list, script_file_path) | |
print("Scripts OK", flush=True) | |
# think about the protagonist in each scene | |
reference_file_path = os.path.join(save_script_path, "protagonist_place_reference.txt") | |
reference_lists = protagonist_place_reference1(video_list, character_places, reference_file_path) | |
print("Reference protagonist OK", flush=True) | |
# translate the English script to Chinese | |
zh_file_path = os.path.join(save_script_path, "zh_video_prompts.txt") | |
zh_video_list = translate_video_script(video_list, zh_file_path) | |
print("Translation OK", flush=True) | |
# schedule the time of script | |
time_file_path = os.path.join(save_script_path, "time_scripts.txt") | |
time_list = time_scripts(video_list, time_file_path) | |
print("Time script OK", flush=True) | |
# make reference image | |
base = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0", | |
torch_dtype=torch.float16, | |
variant="fp16", | |
use_safetensors=True, | |
).to("cuda") | |
refiner = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-refiner-1.0", | |
text_encoder_2=base.text_encoder_2, | |
vae=base.vae, | |
torch_dtype=torch.float16, | |
use_safetensors=True, | |
variant="fp16", | |
).to("cuda") | |
ref_dir_path = os.path.join(story_path.rsplit('/', 1)[0], "ref_img") | |
if not os.path.exists(ref_dir_path): | |
os.makedirs(ref_dir_path) | |
for key, value in character_places.items(): | |
prompt = key + ", " + value | |
img_path = os.path.join(ref_dir_path, key + ".jpg") | |
image = base(prompt=prompt, | |
output_type="latent", | |
height=1024, | |
width=1024, | |
guidance_scale=7 | |
).images[0] | |
image = refiner(prompt=prompt, image=image[None, :]).images[0] | |
image.save(img_path) | |
print("Reference image OK", flush=True) | |
if __name__ == "__main__": | |
parser = argparse.ArgumentParser() | |
parser.add_argument("--config", type=str, default="configs/vlog_write_script.yaml") | |
args = parser.parse_args() | |
omega_conf = OmegaConf.load(args.config) | |
main(omega_conf) | |