Spaces:
Runtime error
Runtime error
import torch | |
import torch.nn as nn | |
import math | |
import timm | |
from timm.models.layers import trunc_normal_ | |
from timm.models.vision_transformer import PatchEmbed, Mlp | |
# assert timm.__version__ == "0.3.2" # version checks | |
import einops | |
import torch.utils.checkpoint | |
# the xformers lib allows less memory, faster training and inference | |
try: | |
import xformers | |
import xformers.ops | |
except: | |
XFORMERS_IS_AVAILBLE = False | |
# print('xformers disabled') | |
def timestep_embedding(timesteps, dim, max_period=10000): | |
""" | |
Create sinusoidal timestep embeddings. | |
:param timesteps: a 1-D Tensor of N indices, one per batch element. | |
These may be fractional. | |
:param dim: the dimension of the output. | |
:param max_period: controls the minimum frequency of the embeddings. | |
:return: an [N x dim] Tensor of positional embeddings. | |
""" | |
half = dim // 2 | |
freqs = torch.exp( | |
-math.log(max_period) * torch.arange(start=0, end=half, dtype=torch.float32) / half | |
).to(device=timesteps.device) | |
args = timesteps[:, None].float() * freqs[None] | |
embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1) | |
if dim % 2: | |
embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1) | |
return embedding | |
def patchify(imgs, patch_size): | |
x = einops.rearrange(imgs, 'B C (h p1) (w p2) -> B (h w) (p1 p2 C)', p1=patch_size, p2=patch_size) | |
return x | |
def unpatchify(x, channels=3): | |
patch_size = int((x.shape[2] // channels) ** 0.5) | |
h = w = int(x.shape[1] ** .5) | |
assert h * w == x.shape[1] and patch_size ** 2 * channels == x.shape[2] | |
x = einops.rearrange(x, 'B (h w) (p1 p2 C) -> B C (h p1) (w p2)', h=h, p1=patch_size, p2=patch_size) | |
return x | |
class Attention(nn.Module): | |
def __init__(self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0., proj_drop=0.): | |
super().__init__() | |
self.num_heads = num_heads | |
head_dim = dim // num_heads | |
self.scale = qk_scale or head_dim ** -0.5 | |
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias) | |
self.attn_drop = nn.Dropout(attn_drop) | |
self.proj = nn.Linear(dim, dim) | |
self.proj_drop = nn.Dropout(proj_drop) | |
def forward(self, x): | |
B, L, C = x.shape | |
qkv = self.qkv(x) | |
if XFORMERS_IS_AVAILBLE: # the xformers lib allows less memory, faster training and inference | |
qkv = einops.rearrange(qkv, 'B L (K H D) -> K B L H D', K=3, H=self.num_heads) | |
q, k, v = qkv[0], qkv[1], qkv[2] # B L H D | |
x = xformers.ops.memory_efficient_attention(q, k, v) | |
x = einops.rearrange(x, 'B L H D -> B L (H D)', H=self.num_heads) | |
else: | |
qkv = einops.rearrange(qkv, 'B L (K H D) -> K B H L D', K=3, H=self.num_heads) | |
q, k, v = qkv[0], qkv[1], qkv[2] # B H L D | |
attn = (q @ k.transpose(-2, -1)) * self.scale | |
attn = attn.softmax(dim=-1) | |
attn = self.attn_drop(attn) | |
x = (attn @ v).transpose(1, 2).reshape(B, L, C) | |
x = self.proj(x) | |
x = self.proj_drop(x) | |
return x | |
class Block(nn.Module): | |
def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, qk_scale=None, | |
act_layer=nn.GELU, norm_layer=nn.LayerNorm, skip=False, use_checkpoint=False): | |
super().__init__() | |
self.norm1 = norm_layer(dim) | |
self.attn = Attention( | |
dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale) | |
self.norm2 = norm_layer(dim) | |
mlp_hidden_dim = int(dim * mlp_ratio) | |
self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer) | |
self.skip_linear = nn.Linear(2 * dim, dim) if skip else None | |
self.use_checkpoint = use_checkpoint | |
def forward(self, x, skip=None): | |
if self.use_checkpoint: | |
return torch.utils.checkpoint.checkpoint(self._forward, x, skip) | |
else: | |
return self._forward(x, skip) | |
def _forward(self, x, skip=None): | |
if self.skip_linear is not None: | |
# print('x shape', x.shape) | |
# print('skip shape', skip.shape) | |
# exit() | |
x = self.skip_linear(torch.cat([x, skip], dim=-1)) | |
x = x + self.attn(self.norm1(x)) | |
x = x + self.mlp(self.norm2(x)) | |
return x | |
class UViT(nn.Module): | |
def __init__(self, input_size=224, patch_size=16, in_chans=3, embed_dim=768, depth=12, num_heads=12, mlp_ratio=4., | |
qkv_bias=False, qk_scale=None, norm_layer=nn.LayerNorm, mlp_time_embed=False, num_classes=-1, | |
use_checkpoint=False, conv=True, skip=True, num_frames=16, class_guided=False, use_lora=False): | |
super().__init__() | |
self.num_features = self.embed_dim = embed_dim # num_features for consistency with other models | |
self.num_classes = num_classes | |
self.in_chans = in_chans | |
self.patch_embed = PatchEmbed( | |
img_size=input_size, patch_size=patch_size, in_chans=in_chans, embed_dim=embed_dim) | |
num_patches = self.patch_embed.num_patches | |
self.time_embed = nn.Sequential( | |
nn.Linear(embed_dim, 4 * embed_dim), | |
nn.SiLU(), | |
nn.Linear(4 * embed_dim, embed_dim), | |
) if mlp_time_embed else nn.Identity() | |
if self.num_classes > 0: | |
self.label_emb = nn.Embedding(self.num_classes, embed_dim) | |
self.extras = 2 | |
else: | |
self.extras = 1 | |
self.pos_embed = nn.Parameter(torch.zeros(1, self.extras + num_patches, embed_dim)) | |
self.frame_embed = nn.Parameter(torch.zeros(1, num_frames, embed_dim)) | |
self.in_blocks = nn.ModuleList([ | |
Block( | |
dim=embed_dim, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale, | |
norm_layer=norm_layer, use_checkpoint=use_checkpoint) | |
for _ in range(depth // 2)]) | |
self.mid_block = Block( | |
dim=embed_dim, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale, | |
norm_layer=norm_layer, use_checkpoint=use_checkpoint) | |
self.out_blocks = nn.ModuleList([ | |
Block( | |
dim=embed_dim, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale, | |
norm_layer=norm_layer, skip=skip, use_checkpoint=use_checkpoint) | |
for _ in range(depth // 2)]) | |
self.norm = norm_layer(embed_dim) | |
self.patch_dim = patch_size ** 2 * in_chans | |
self.decoder_pred = nn.Linear(embed_dim, self.patch_dim, bias=True) | |
self.final_layer = nn.Conv2d(self.in_chans, self.in_chans * 2, 3, padding=1) if conv else nn.Identity() | |
trunc_normal_(self.pos_embed, std=.02) | |
trunc_normal_(self.frame_embed, std=.02) | |
self.apply(self._init_weights) | |
def _init_weights(self, m): | |
if isinstance(m, nn.Linear): | |
trunc_normal_(m.weight, std=.02) | |
if isinstance(m, nn.Linear) and m.bias is not None: | |
nn.init.constant_(m.bias, 0) | |
elif isinstance(m, nn.LayerNorm): | |
nn.init.constant_(m.bias, 0) | |
nn.init.constant_(m.weight, 1.0) | |
def no_weight_decay(self): | |
return {'pos_embed'} | |
def forward_(self, x, timesteps, y=None): | |
x = self.patch_embed(x) # 48, 256, 1152 | |
# print(x.shape) | |
B, L, D = x.shape | |
time_token = self.time_embed(timestep_embedding(timesteps, self.embed_dim)) # 3, 1152 | |
# print(time_token.shape) | |
time_token = time_token.unsqueeze(dim=1) # 3, 1, 1152 | |
x = torch.cat((time_token, x), dim=1) | |
if y is not None: | |
label_emb = self.label_emb(y) | |
label_emb = label_emb.unsqueeze(dim=1) | |
x = torch.cat((label_emb, x), dim=1) | |
x = x + self.pos_embed | |
skips = [] | |
for blk in self.in_blocks: | |
x = blk(x) | |
skips.append(x) | |
x = self.mid_block(x) | |
for blk in self.out_blocks: | |
x = blk(x, skips.pop()) | |
x = self.norm(x) | |
x = self.decoder_pred(x) | |
assert x.size(1) == self.extras + L | |
x = x[:, self.extras:, :] | |
x = unpatchify(x, self.in_chans) | |
x = self.final_layer(x) | |
return x | |
def forward(self, x, timesteps, y=None): | |
# print(x.shape) | |
batch, frame, _, _, _ = x.shape | |
# θΏιrearrangeεζ―ιfζ―εδΈδΈͺθ§ι’ | |
x = einops.rearrange(x, 'b f c h w -> (b f) c h w') # 3 16 4 256 256 | |
x = self.patch_embed(x) # 48, 256, 1152 | |
B, L, D = x.shape | |
time_token = self.time_embed(timestep_embedding(timesteps, self.embed_dim)) # 3, 1152 | |
# timestep_spatialηrepeatιθ¦δΏθ―ζ―fεΈ§δΈΊεδΈδΈͺtimesteps | |
time_token_spatial = einops.repeat(time_token, 'n d -> (n c) d', c=frame) # 48, 1152 | |
time_token_spatial = time_token_spatial.unsqueeze(dim=1) # 48, 1, 1152 | |
x = torch.cat((time_token_spatial, x), dim=1) # 48, 257, 1152 | |
if y is not None: | |
label_emb = self.label_emb(y) | |
label_emb = label_emb.unsqueeze(dim=1) | |
x = torch.cat((label_emb, x), dim=1) | |
x = x + self.pos_embed | |
skips = [] | |
for i in range(0, len(self.in_blocks), 2): | |
# print('The {}-th run'.format(i)) | |
spatial_block, time_block = self.in_blocks[i:i+2] | |
x = spatial_block(x) | |
# add time embeddings and conduct attention as frame. | |
x = einops.rearrange(x, '(b f) t d -> (b t) f d', b=batch) # t 代葨εεΈ§tokenζ°; 771, 16, 1152; 771: 3 * 257 | |
skips.append(x) | |
# print(x.shape) | |
if i == 0: | |
x = x + self.frame_embed # 771, 16, 1152 | |
x = time_block(x) | |
x = einops.rearrange(x, '(b t) f d -> (b f) t d', b=batch) # 48, 257, 1152 | |
skips.append(x) | |
x = self.mid_block(x) | |
for i in range(0, len(self.out_blocks), 2): | |
# print('The {}-th run'.format(i)) | |
spatial_block, time_block = self.out_blocks[i:i+2] | |
x = spatial_block(x, skips.pop()) | |
# add time embeddings and conduct attention as frame. | |
x = einops.rearrange(x, '(b f) t d -> (b t) f d', b=batch) # t 代葨εεΈ§tokenζ°; 771, 16, 1152; 771: 3 * 257 | |
x = time_block(x, skips.pop()) | |
x = einops.rearrange(x, '(b t) f d -> (b f) t d', b=batch) # 48, 256, 1152 | |
x = self.norm(x) | |
x = self.decoder_pred(x) | |
assert x.size(1) == self.extras + L | |
x = x[:, self.extras:, :] | |
x = unpatchify(x, self.in_chans) | |
x = self.final_layer(x) | |
x = einops.rearrange(x, '(b f) c h w -> b f c h w', b=batch) | |
# print(x.shape) | |
return x | |
def UViT_XL_2(**kwargs): | |
return UViT(patch_size=2, in_chans=4, embed_dim=1152, depth=28, | |
num_heads=16, mlp_ratio=4, qkv_bias=False, mlp_time_embed=4, | |
use_checkpoint=True, conv=False, **kwargs) | |
def UViT_L_2(**kwargs): | |
return UViT(patch_size=2, in_chans=4, embed_dim=1024, depth=20, | |
num_heads=16, mlp_ratio=4, qkv_bias=False, mlp_time_embed=False, | |
use_checkpoint=True, **kwargs) | |
# 沑ζLδ»₯δΈηοΌUViTδΈLδ»₯δΈηimg_sizeδΈΊ64 | |
UViT_models = { | |
'UViT-XL/2': UViT_XL_2, 'UViT-L/2': UViT_L_2 | |
} | |
if __name__ == '__main__': | |
nnet = UViT_XL_2().cuda() | |
imgs = torch.randn(3, 16, 4, 32, 32).cuda() | |
timestpes = torch.tensor([1, 2, 3]).cuda() | |
outputs = nnet(imgs, timestpes) | |
print(outputs.shape) | |