SEINE / models /uvit.py
Zhouyan248's picture
Upload 119 files
0035a82
raw
history blame
11.7 kB
import torch
import torch.nn as nn
import math
import timm
from timm.models.layers import trunc_normal_
from timm.models.vision_transformer import PatchEmbed, Mlp
# assert timm.__version__ == "0.3.2" # version checks
import einops
import torch.utils.checkpoint
# the xformers lib allows less memory, faster training and inference
try:
import xformers
import xformers.ops
except:
XFORMERS_IS_AVAILBLE = False
# print('xformers disabled')
def timestep_embedding(timesteps, dim, max_period=10000):
"""
Create sinusoidal timestep embeddings.
:param timesteps: a 1-D Tensor of N indices, one per batch element.
These may be fractional.
:param dim: the dimension of the output.
:param max_period: controls the minimum frequency of the embeddings.
:return: an [N x dim] Tensor of positional embeddings.
"""
half = dim // 2
freqs = torch.exp(
-math.log(max_period) * torch.arange(start=0, end=half, dtype=torch.float32) / half
).to(device=timesteps.device)
args = timesteps[:, None].float() * freqs[None]
embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1)
if dim % 2:
embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1)
return embedding
def patchify(imgs, patch_size):
x = einops.rearrange(imgs, 'B C (h p1) (w p2) -> B (h w) (p1 p2 C)', p1=patch_size, p2=patch_size)
return x
def unpatchify(x, channels=3):
patch_size = int((x.shape[2] // channels) ** 0.5)
h = w = int(x.shape[1] ** .5)
assert h * w == x.shape[1] and patch_size ** 2 * channels == x.shape[2]
x = einops.rearrange(x, 'B (h w) (p1 p2 C) -> B C (h p1) (w p2)', h=h, p1=patch_size, p2=patch_size)
return x
class Attention(nn.Module):
def __init__(self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0., proj_drop=0.):
super().__init__()
self.num_heads = num_heads
head_dim = dim // num_heads
self.scale = qk_scale or head_dim ** -0.5
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
self.attn_drop = nn.Dropout(attn_drop)
self.proj = nn.Linear(dim, dim)
self.proj_drop = nn.Dropout(proj_drop)
def forward(self, x):
B, L, C = x.shape
qkv = self.qkv(x)
if XFORMERS_IS_AVAILBLE: # the xformers lib allows less memory, faster training and inference
qkv = einops.rearrange(qkv, 'B L (K H D) -> K B L H D', K=3, H=self.num_heads)
q, k, v = qkv[0], qkv[1], qkv[2] # B L H D
x = xformers.ops.memory_efficient_attention(q, k, v)
x = einops.rearrange(x, 'B L H D -> B L (H D)', H=self.num_heads)
else:
qkv = einops.rearrange(qkv, 'B L (K H D) -> K B H L D', K=3, H=self.num_heads)
q, k, v = qkv[0], qkv[1], qkv[2] # B H L D
attn = (q @ k.transpose(-2, -1)) * self.scale
attn = attn.softmax(dim=-1)
attn = self.attn_drop(attn)
x = (attn @ v).transpose(1, 2).reshape(B, L, C)
x = self.proj(x)
x = self.proj_drop(x)
return x
class Block(nn.Module):
def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, qk_scale=None,
act_layer=nn.GELU, norm_layer=nn.LayerNorm, skip=False, use_checkpoint=False):
super().__init__()
self.norm1 = norm_layer(dim)
self.attn = Attention(
dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale)
self.norm2 = norm_layer(dim)
mlp_hidden_dim = int(dim * mlp_ratio)
self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer)
self.skip_linear = nn.Linear(2 * dim, dim) if skip else None
self.use_checkpoint = use_checkpoint
def forward(self, x, skip=None):
if self.use_checkpoint:
return torch.utils.checkpoint.checkpoint(self._forward, x, skip)
else:
return self._forward(x, skip)
def _forward(self, x, skip=None):
if self.skip_linear is not None:
# print('x shape', x.shape)
# print('skip shape', skip.shape)
# exit()
x = self.skip_linear(torch.cat([x, skip], dim=-1))
x = x + self.attn(self.norm1(x))
x = x + self.mlp(self.norm2(x))
return x
class UViT(nn.Module):
def __init__(self, input_size=224, patch_size=16, in_chans=3, embed_dim=768, depth=12, num_heads=12, mlp_ratio=4.,
qkv_bias=False, qk_scale=None, norm_layer=nn.LayerNorm, mlp_time_embed=False, num_classes=-1,
use_checkpoint=False, conv=True, skip=True, num_frames=16, class_guided=False, use_lora=False):
super().__init__()
self.num_features = self.embed_dim = embed_dim # num_features for consistency with other models
self.num_classes = num_classes
self.in_chans = in_chans
self.patch_embed = PatchEmbed(
img_size=input_size, patch_size=patch_size, in_chans=in_chans, embed_dim=embed_dim)
num_patches = self.patch_embed.num_patches
self.time_embed = nn.Sequential(
nn.Linear(embed_dim, 4 * embed_dim),
nn.SiLU(),
nn.Linear(4 * embed_dim, embed_dim),
) if mlp_time_embed else nn.Identity()
if self.num_classes > 0:
self.label_emb = nn.Embedding(self.num_classes, embed_dim)
self.extras = 2
else:
self.extras = 1
self.pos_embed = nn.Parameter(torch.zeros(1, self.extras + num_patches, embed_dim))
self.frame_embed = nn.Parameter(torch.zeros(1, num_frames, embed_dim))
self.in_blocks = nn.ModuleList([
Block(
dim=embed_dim, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale,
norm_layer=norm_layer, use_checkpoint=use_checkpoint)
for _ in range(depth // 2)])
self.mid_block = Block(
dim=embed_dim, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale,
norm_layer=norm_layer, use_checkpoint=use_checkpoint)
self.out_blocks = nn.ModuleList([
Block(
dim=embed_dim, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale,
norm_layer=norm_layer, skip=skip, use_checkpoint=use_checkpoint)
for _ in range(depth // 2)])
self.norm = norm_layer(embed_dim)
self.patch_dim = patch_size ** 2 * in_chans
self.decoder_pred = nn.Linear(embed_dim, self.patch_dim, bias=True)
self.final_layer = nn.Conv2d(self.in_chans, self.in_chans * 2, 3, padding=1) if conv else nn.Identity()
trunc_normal_(self.pos_embed, std=.02)
trunc_normal_(self.frame_embed, std=.02)
self.apply(self._init_weights)
def _init_weights(self, m):
if isinstance(m, nn.Linear):
trunc_normal_(m.weight, std=.02)
if isinstance(m, nn.Linear) and m.bias is not None:
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.LayerNorm):
nn.init.constant_(m.bias, 0)
nn.init.constant_(m.weight, 1.0)
@torch.jit.ignore
def no_weight_decay(self):
return {'pos_embed'}
def forward_(self, x, timesteps, y=None):
x = self.patch_embed(x) # 48, 256, 1152
# print(x.shape)
B, L, D = x.shape
time_token = self.time_embed(timestep_embedding(timesteps, self.embed_dim)) # 3, 1152
# print(time_token.shape)
time_token = time_token.unsqueeze(dim=1) # 3, 1, 1152
x = torch.cat((time_token, x), dim=1)
if y is not None:
label_emb = self.label_emb(y)
label_emb = label_emb.unsqueeze(dim=1)
x = torch.cat((label_emb, x), dim=1)
x = x + self.pos_embed
skips = []
for blk in self.in_blocks:
x = blk(x)
skips.append(x)
x = self.mid_block(x)
for blk in self.out_blocks:
x = blk(x, skips.pop())
x = self.norm(x)
x = self.decoder_pred(x)
assert x.size(1) == self.extras + L
x = x[:, self.extras:, :]
x = unpatchify(x, self.in_chans)
x = self.final_layer(x)
return x
def forward(self, x, timesteps, y=None):
# print(x.shape)
batch, frame, _, _, _ = x.shape
# θΏ™ι‡ŒrearrangeεŽζ―ιš”fζ˜―εŒδΈ€δΈͺ视钑
x = einops.rearrange(x, 'b f c h w -> (b f) c h w') # 3 16 4 256 256
x = self.patch_embed(x) # 48, 256, 1152
B, L, D = x.shape
time_token = self.time_embed(timestep_embedding(timesteps, self.embed_dim)) # 3, 1152
# timestep_spatialηš„repeatιœ€θ¦δΏθ―ζ―fεΈ§δΈΊεŒδΈ€δΈͺtimesteps
time_token_spatial = einops.repeat(time_token, 'n d -> (n c) d', c=frame) # 48, 1152
time_token_spatial = time_token_spatial.unsqueeze(dim=1) # 48, 1, 1152
x = torch.cat((time_token_spatial, x), dim=1) # 48, 257, 1152
if y is not None:
label_emb = self.label_emb(y)
label_emb = label_emb.unsqueeze(dim=1)
x = torch.cat((label_emb, x), dim=1)
x = x + self.pos_embed
skips = []
for i in range(0, len(self.in_blocks), 2):
# print('The {}-th run'.format(i))
spatial_block, time_block = self.in_blocks[i:i+2]
x = spatial_block(x)
# add time embeddings and conduct attention as frame.
x = einops.rearrange(x, '(b f) t d -> (b t) f d', b=batch) # t 代葨单帧tokenζ•°; 771, 16, 1152; 771: 3 * 257
skips.append(x)
# print(x.shape)
if i == 0:
x = x + self.frame_embed # 771, 16, 1152
x = time_block(x)
x = einops.rearrange(x, '(b t) f d -> (b f) t d', b=batch) # 48, 257, 1152
skips.append(x)
x = self.mid_block(x)
for i in range(0, len(self.out_blocks), 2):
# print('The {}-th run'.format(i))
spatial_block, time_block = self.out_blocks[i:i+2]
x = spatial_block(x, skips.pop())
# add time embeddings and conduct attention as frame.
x = einops.rearrange(x, '(b f) t d -> (b t) f d', b=batch) # t 代葨单帧tokenζ•°; 771, 16, 1152; 771: 3 * 257
x = time_block(x, skips.pop())
x = einops.rearrange(x, '(b t) f d -> (b f) t d', b=batch) # 48, 256, 1152
x = self.norm(x)
x = self.decoder_pred(x)
assert x.size(1) == self.extras + L
x = x[:, self.extras:, :]
x = unpatchify(x, self.in_chans)
x = self.final_layer(x)
x = einops.rearrange(x, '(b f) c h w -> b f c h w', b=batch)
# print(x.shape)
return x
def UViT_XL_2(**kwargs):
return UViT(patch_size=2, in_chans=4, embed_dim=1152, depth=28,
num_heads=16, mlp_ratio=4, qkv_bias=False, mlp_time_embed=4,
use_checkpoint=True, conv=False, **kwargs)
def UViT_L_2(**kwargs):
return UViT(patch_size=2, in_chans=4, embed_dim=1024, depth=20,
num_heads=16, mlp_ratio=4, qkv_bias=False, mlp_time_embed=False,
use_checkpoint=True, **kwargs)
# ζ²‘ζœ‰Lδ»₯δΈ‹ηš„οΌŒUViTδΈ­Lδ»₯δΈ‹ηš„img_sizeδΈΊ64
UViT_models = {
'UViT-XL/2': UViT_XL_2, 'UViT-L/2': UViT_L_2
}
if __name__ == '__main__':
nnet = UViT_XL_2().cuda()
imgs = torch.randn(3, 16, 4, 32, 32).cuda()
timestpes = torch.tensor([1, 2, 3]).cuda()
outputs = nnet(imgs, timestpes)
print(outputs.shape)