SEINE / models /__init__.py
Zhouyan248's picture
Upload 119 files
0035a82
raw
history blame
1.86 kB
import os
import sys
sys.path.append(os.path.split(sys.path[0])[0])
from .dit import DiT_models
from .uvit import UViT_models
from .unet import UNet3DConditionModel
from torch.optim.lr_scheduler import LambdaLR
def customized_lr_scheduler(optimizer, warmup_steps=5000): # 5000 from u-vit
from torch.optim.lr_scheduler import LambdaLR
def fn(step):
if warmup_steps > 0:
return min(step / warmup_steps, 1)
else:
return 1
return LambdaLR(optimizer, fn)
def get_lr_scheduler(optimizer, name, **kwargs):
if name == 'warmup':
return customized_lr_scheduler(optimizer, **kwargs)
elif name == 'cosine':
from torch.optim.lr_scheduler import CosineAnnealingLR
return CosineAnnealingLR(optimizer, **kwargs)
else:
raise NotImplementedError(name)
def get_models(args):
if 'DiT' in args.model:
return DiT_models[args.model](
input_size=args.latent_size,
num_classes=args.num_classes,
class_guided=args.class_guided,
num_frames=args.num_frames,
use_lora=args.use_lora,
attention_mode=args.attention_mode
)
elif 'UViT' in args.model:
return UViT_models[args.model](
input_size=args.latent_size,
num_classes=args.num_classes,
class_guided=args.class_guided,
num_frames=args.num_frames,
use_lora=args.use_lora,
attention_mode=args.attention_mode
)
elif 'TAV' in args.model:
pretrained_model_path = args.pretrained_model_path
return UNet3DConditionModel.from_pretrained_2d(pretrained_model_path, subfolder="unet", use_concat=args.use_mask)
else:
raise '{} Model Not Supported!'.format(args.model)