Spaces:
Runtime error
Runtime error
import gradio as gr | |
from image_to_video import model_i2v_fun, get_input, auto_inpainting, setup_seed | |
from omegaconf import OmegaConf | |
import torch | |
from diffusers.utils.import_utils import is_xformers_available | |
import torchvision | |
from utils import mask_generation_before | |
import os | |
import cv2 | |
config_path = "./configs/sample_i2v.yaml" | |
args = OmegaConf.load(config_path) | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
css = """ | |
h1 { | |
text-align: center; | |
} | |
#component-0 { | |
max-width: 730px; | |
margin: auto; | |
} | |
""" | |
def infer(prompt, image_inp, seed_inp, sampling_steps,width,height,infer_type): | |
setup_seed(seed_inp) | |
args.num_sampling_steps = sampling_steps | |
img = cv2.imread(image_inp) | |
new_size = [height,width] | |
args.image_size = new_size | |
if infer_type == 'ddpm': | |
args.sample_method = 'ddpm' | |
elif infer_type == 'ddim': | |
args.sample_method = 'ddim' | |
vae, model, text_encoder, diffusion = model_i2v_fun(args) | |
vae.to(device) | |
model.to(device) | |
text_encoder.to(device) | |
if args.use_fp16: | |
vae.to(dtype=torch.float16) | |
model.to(dtype=torch.float16) | |
text_encoder.to(dtype=torch.float16) | |
if args.enable_xformers_memory_efficient_attention and device=="cuda": | |
if is_xformers_available(): | |
model.enable_xformers_memory_efficient_attention() | |
else: | |
raise ValueError("xformers is not available. Make sure it is installed correctly") | |
video_input, reserve_frames = get_input(image_inp, args) | |
video_input = video_input.to(device).unsqueeze(0) | |
mask = mask_generation_before(args.mask_type, video_input.shape, video_input.dtype, device) | |
masked_video = video_input * (mask == 0) | |
prompt = prompt + args.additional_prompt | |
video_clip = auto_inpainting(args, video_input, masked_video, mask, prompt, vae, text_encoder, diffusion, model, device,) | |
video_ = ((video_clip * 0.5 + 0.5) * 255).add_(0.5).clamp_(0, 255).to(dtype=torch.uint8).cpu().permute(0, 2, 3, 1) | |
torchvision.io.write_video(os.path.join(args.save_img_path, prompt+ '.mp4'), video_, fps=8) | |
return os.path.join(args.save_img_path, prompt+ '.mp4') | |
# def clean(): | |
# return gr.Image.update(value=None, visible=False), gr.Video.update(value=None) | |
# return gr.Video.update(value=None) | |
title = """ | |
<div style="text-align: center; max-width: 700px; margin: 0 auto;"> | |
<div | |
style=" | |
display: inline-flex; | |
align-items: center; | |
gap: 0.8rem; | |
font-size: 1.75rem; | |
" | |
> | |
<h1 style="font-weight: 900; margin-bottom: 7px; margin-top: 5px;"> | |
SEINE: Image-to-Video generation | |
</h1> | |
</div> | |
<p style="margin-bottom: 10px; font-size: 94%"> | |
Apply SEINE to generate a video | |
</p> | |
</div> | |
""" | |
with gr.Blocks(css='style.css') as demo: | |
gr.Markdown("<font color=red size=10><center>SEINE: Image-to-Video generation</center></font>") | |
gr.Markdown( | |
"""<div style="text-align:center"> | |
[<a href="https://arxiv.org/abs/2310.20700">Arxiv Report</a>] | [<a href="https://vchitect.github.io/SEINE-project/">Project Page</a>] | [<a href="https://github.com/Vchitect/SEINE">Github</a>]</div> | |
""" | |
) | |
with gr.Column(elem_id="col-container"): | |
# gr.HTML(title) | |
with gr.Row(): | |
with gr.Column(): | |
image_inp = gr.Image(type='filepath') | |
with gr.Column(): | |
prompt = gr.Textbox(label="Prompt", placeholder="enter prompt", show_label=True, elem_id="prompt-in") | |
with gr.Row(): | |
infer_type = gr.Dropdown(['ddpm','ddim'], label='infer_type',value='ddim') | |
sampling_steps = gr.Slider(label='Steps', minimum=50, maximum=300, value=100, step=1) | |
seed_inp = gr.Slider(label="Seed", minimum=0, maximum=2147483647, step=1, value=250, elem_id="seed-in") | |
with gr.Row(): | |
width = gr.Slider(label='width',minimum=1,maximum=2000,value=512,step=1) | |
height = gr.Slider(label='height',minimum=1,maximum=2000,value=320,step=1) | |
# sampling_steps = gr.Slider(label='Steps', minimum=50, maximum=300, value=250, step=1) | |
submit_btn = gr.Button("Generate video") | |
# clean_btn = gr.Button("Clean video") | |
video_out = gr.Video(label="Video result", elem_id="video-output", width = 750) | |
inputs = [prompt,image_inp, seed_inp, sampling_steps,width,height,infer_type] | |
outputs = [video_out] | |
ex = gr.Examples( | |
examples = [["./input/i2v/The_picture_shows_the_beauty_of_the_sea.png","A video of the beauty of the sea",14717,250,560,240,'ddim'], | |
["./input/i2v/Close-up_essence_is_poured_from_bottleKodak_Vision.png","A video of close-up essence is poured from bottleKodak Vision",178135313,250,560,240,'ddim'], | |
["./input/i2v/The_picture_shows_the_beauty_of_the_sea_and_at_the_same.png","A video of the beauty of the sea",123,250,560,240,'ddim']], | |
fn = infer, | |
inputs = [image_inp, prompt, seed_inp, sampling_steps,width,height,infer_type], | |
outputs=[video_out], | |
cache_examples=False | |
) | |
ex.dataset.headers = [""] | |
# clean_btn.click(clean, inputs=[], outputs=[video_out], queue=False) | |
submit_btn.click(infer, inputs, outputs) | |
# share_button.click(None, [], [], _js=share_js) | |
demo.queue(max_size=12).launch() | |