LaVie / interpolation /utils.py
Zhouyan248's picture
Upload 86 files
26555ee
import os
import math
import torch
import logging
import subprocess
import numpy as np
import torch.distributed as dist
# from torch._six import inf
from torch import inf
from PIL import Image
from typing import Union, Iterable
from collections import OrderedDict
_tensor_or_tensors = Union[torch.Tensor, Iterable[torch.Tensor]]
#################################################################################
# Training Helper Functions #
#################################################################################
#################################################################################
# Training Clip Gradients #
#################################################################################
def get_grad_norm(
parameters: _tensor_or_tensors, norm_type: float = 2.0) -> torch.Tensor:
r"""
Copy from torch.nn.utils.clip_grad_norm_
Clips gradient norm of an iterable of parameters.
The norm is computed over all gradients together, as if they were
concatenated into a single vector. Gradients are modified in-place.
Args:
parameters (Iterable[Tensor] or Tensor): an iterable of Tensors or a
single Tensor that will have gradients normalized
max_norm (float or int): max norm of the gradients
norm_type (float or int): type of the used p-norm. Can be ``'inf'`` for
infinity norm.
error_if_nonfinite (bool): if True, an error is thrown if the total
norm of the gradients from :attr:`parameters` is ``nan``,
``inf``, or ``-inf``. Default: False (will switch to True in the future)
Returns:
Total norm of the parameter gradients (viewed as a single vector).
"""
if isinstance(parameters, torch.Tensor):
parameters = [parameters]
grads = [p.grad for p in parameters if p.grad is not None]
norm_type = float(norm_type)
if len(grads) == 0:
return torch.tensor(0.)
device = grads[0].device
if norm_type == inf:
norms = [g.detach().abs().max().to(device) for g in grads]
total_norm = norms[0] if len(norms) == 1 else torch.max(torch.stack(norms))
else:
total_norm = torch.norm(torch.stack([torch.norm(g.detach(), norm_type).to(device) for g in grads]), norm_type)
return total_norm
def clip_grad_norm_(
parameters: _tensor_or_tensors, max_norm: float, norm_type: float = 2.0,
error_if_nonfinite: bool = False, clip_grad = True) -> torch.Tensor:
r"""
Copy from torch.nn.utils.clip_grad_norm_
Clips gradient norm of an iterable of parameters.
The norm is computed over all gradients together, as if they were
concatenated into a single vector. Gradients are modified in-place.
Args:
parameters (Iterable[Tensor] or Tensor): an iterable of Tensors or a
single Tensor that will have gradients normalized
max_norm (float or int): max norm of the gradients
norm_type (float or int): type of the used p-norm. Can be ``'inf'`` for
infinity norm.
error_if_nonfinite (bool): if True, an error is thrown if the total
norm of the gradients from :attr:`parameters` is ``nan``,
``inf``, or ``-inf``. Default: False (will switch to True in the future)
Returns:
Total norm of the parameter gradients (viewed as a single vector).
"""
if isinstance(parameters, torch.Tensor):
parameters = [parameters]
grads = [p.grad for p in parameters if p.grad is not None]
max_norm = float(max_norm)
norm_type = float(norm_type)
if len(grads) == 0:
return torch.tensor(0.)
device = grads[0].device
if norm_type == inf:
norms = [g.detach().abs().max().to(device) for g in grads]
total_norm = norms[0] if len(norms) == 1 else torch.max(torch.stack(norms))
else:
total_norm = torch.norm(torch.stack([torch.norm(g.detach(), norm_type).to(device) for g in grads]), norm_type)
# print(total_norm)
if clip_grad:
if error_if_nonfinite and torch.logical_or(total_norm.isnan(), total_norm.isinf()):
raise RuntimeError(
f'The total norm of order {norm_type} for gradients from '
'`parameters` is non-finite, so it cannot be clipped. To disable '
'this error and scale the gradients by the non-finite norm anyway, '
'set `error_if_nonfinite=False`')
clip_coef = max_norm / (total_norm + 1e-6)
# Note: multiplying by the clamped coef is redundant when the coef is clamped to 1, but doing so
# avoids a `if clip_coef < 1:` conditional which can require a CPU <=> device synchronization
# when the gradients do not reside in CPU memory.
clip_coef_clamped = torch.clamp(clip_coef, max=1.0)
for g in grads:
g.detach().mul_(clip_coef_clamped.to(g.device))
# gradient_cliped = torch.norm(torch.stack([torch.norm(g.detach(), norm_type).to(device) for g in grads]), norm_type)
# print(gradient_cliped)
return total_norm
#################################################################################
# Training Logger #
#################################################################################
def create_logger(logging_dir):
"""
Create a logger that writes to a log file and stdout.
"""
if dist.get_rank() == 0: # real logger
logging.basicConfig(
level=logging.INFO,
# format='[\033[34m%(asctime)s\033[0m] %(message)s',
format='[%(asctime)s] %(message)s',
datefmt='%Y-%m-%d %H:%M:%S',
handlers=[logging.StreamHandler(), logging.FileHandler(f"{logging_dir}/log.txt")]
)
logger = logging.getLogger(__name__)
else: # dummy logger (does nothing)
logger = logging.getLogger(__name__)
logger.addHandler(logging.NullHandler())
return logger
def create_accelerate_logger(logging_dir, is_main_process=False):
"""
Create a logger that writes to a log file and stdout.
"""
if is_main_process: # real logger
logging.basicConfig(
level=logging.INFO,
# format='[\033[34m%(asctime)s\033[0m] %(message)s',
format='[%(asctime)s] %(message)s',
datefmt='%Y-%m-%d %H:%M:%S',
handlers=[logging.StreamHandler(), logging.FileHandler(f"{logging_dir}/log.txt")]
)
logger = logging.getLogger(__name__)
else: # dummy logger (does nothing)
logger = logging.getLogger(__name__)
logger.addHandler(logging.NullHandler())
return logger
def create_tensorboard(tensorboard_dir):
"""
Create a tensorboard that saves losses.
"""
if dist.get_rank() == 0: # real tensorboard
# tensorboard
writer = SummaryWriter(tensorboard_dir)
return writer
def write_tensorboard(writer, *args):
'''
write the loss information to a tensorboard file.
Only for pytorch DDP mode.
'''
if dist.get_rank() == 0: # real tensorboard
writer.add_scalar(args[0], args[1], args[2])
#################################################################################
# EMA Update/ DDP Training Utils #
#################################################################################
@torch.no_grad()
def update_ema(ema_model, model, decay=0.9999):
"""
Step the EMA model towards the current model.
"""
ema_params = OrderedDict(ema_model.named_parameters())
model_params = OrderedDict(model.named_parameters())
for name, param in model_params.items():
# TODO: Consider applying only to params that require_grad to avoid small numerical changes of pos_embed
ema_params[name].mul_(decay).add_(param.data, alpha=1 - decay)
def requires_grad(model, flag=True):
"""
Set requires_grad flag for all parameters in a model.
"""
for p in model.parameters():
p.requires_grad = flag
def cleanup():
"""
End DDP training.
"""
dist.destroy_process_group()
def setup_distributed(backend="nccl", port=None):
"""Initialize distributed training environment.
support both slurm and torch.distributed.launch
see torch.distributed.init_process_group() for more details
"""
num_gpus = torch.cuda.device_count()
print(f'Hahahahahaha')
if "SLURM_JOB_ID" in os.environ:
rank = int(os.environ["SLURM_PROCID"])
world_size = int(os.environ["SLURM_NTASKS"])
node_list = os.environ["SLURM_NODELIST"]
addr = subprocess.getoutput(f"scontrol show hostname {node_list} | head -n1")
# specify master port
if port is not None:
os.environ["MASTER_PORT"] = str(port)
elif "MASTER_PORT" not in os.environ:
# os.environ["MASTER_PORT"] = "29566"
os.environ["MASTER_PORT"] = str(29566 + num_gpus)
if "MASTER_ADDR" not in os.environ:
os.environ["MASTER_ADDR"] = addr
os.environ["WORLD_SIZE"] = str(world_size)
os.environ["LOCAL_RANK"] = str(rank % num_gpus)
os.environ["RANK"] = str(rank)
else:
rank = int(os.environ["RANK"])
world_size = int(os.environ["WORLD_SIZE"])
# torch.cuda.set_device(rank % num_gpus)
print(f'before dist.init_process_group')
dist.init_process_group(
backend=backend,
world_size=world_size,
rank=rank,
)
print(f'after dist.init_process_group')
#################################################################################
# Testing Utils #
#################################################################################
def save_video_grid(video, nrow=None):
b, t, h, w, c = video.shape
if nrow is None:
nrow = math.ceil(math.sqrt(b))
ncol = math.ceil(b / nrow)
padding = 1
video_grid = torch.zeros((t, (padding + h) * nrow + padding,
(padding + w) * ncol + padding, c), dtype=torch.uint8)
print(video_grid.shape)
for i in range(b):
r = i // ncol
c = i % ncol
start_r = (padding + h) * r
start_c = (padding + w) * c
video_grid[:, start_r:start_r + h, start_c:start_c + w] = video[i]
return video_grid
#################################################################################
# MMCV Utils #
#################################################################################
def collect_env():
# Copyright (c) OpenMMLab. All rights reserved.
from mmcv.utils import collect_env as collect_base_env
from mmcv.utils import get_git_hash
"""Collect the information of the running environments."""
env_info = collect_base_env()
env_info['MMClassification'] = get_git_hash()[:7]
for name, val in env_info.items():
print(f'{name}: {val}')
print(torch.cuda.get_arch_list())
print(torch.version.cuda)
#################################################################################
# Long video generation Utils #
#################################################################################
def mask_generation(mask_type, shape, dtype, device):
b, c, f, h, w = shape
if mask_type.startswith('random'):
num = float(mask_type.split('random')[-1])
mask_f = torch.ones(1, 1, f, 1, 1, dtype=dtype, device=device)
indices = torch.randperm(f, device=device)[:int(f*num)]
mask_f[0, 0, indices, :, :] = 0
mask = mask_f.expand(b, c, -1, h, w)
elif mask_type.startswith('first'):
num = int(mask_type.split('first')[-1])
mask_f = torch.cat([torch.zeros(1, 1, num, 1, 1, dtype=dtype, device=device),
torch.ones(1, 1, f-num, 1, 1, dtype=dtype, device=device)], dim=2)
mask = mask_f.expand(b, c, -1, h, w)
else:
raise ValueError(f"Invalid mask type: {mask_type}")
return mask
def mask_generation_before(mask_type, shape, dtype, device):
b, f, c, h, w = shape
if mask_type.startswith('random'):
num = float(mask_type.split('random')[-1])
mask_f = torch.ones(1, f, 1, 1, 1, dtype=dtype, device=device)
indices = torch.randperm(f, device=device)[:int(f*num)]
mask_f[0, indices, :, :, :] = 0
mask = mask_f.expand(b, -1, c, h, w)
elif mask_type.startswith('first'):
num = int(mask_type.split('first')[-1])
mask_f = torch.cat([torch.zeros(1, num, 1, 1, 1, dtype=dtype, device=device),
torch.ones(1, f-num, 1, 1, 1, dtype=dtype, device=device)], dim=1)
mask = mask_f.expand(b, -1, c, h, w)
elif mask_type.startswith('uniform'):
p = float(mask_type.split('uniform')[-1])
mask_f = torch.ones(1, f, 1, 1, 1, dtype=dtype, device=device)
mask_f[0, torch.rand(f, device=device) < p, :, :, :] = 0
print(f'mask_f: = {mask_f}')
mask = mask_f.expand(b, -1, c, h, w)
print(f'mask.shape: = {mask.shape}, mask: = {mask}')
elif mask_type.startswith('all'):
mask = torch.ones(b,f,c,h,w,dtype=dtype,device=device)
elif mask_type.startswith('onelast'):
num = int(mask_type.split('onelast')[-1])
mask_one = torch.zeros(1,1,1,1,1, dtype=dtype, device=device)
mask_mid = torch.ones(1,f-2*num,1,1,1,dtype=dtype, device=device)
mask_last = torch.zeros_like(mask_one)
mask = torch.cat([mask_one]*num + [mask_mid] + [mask_last]*num, dim=1)
# breakpoint()
mask = mask.expand(b, -1, c, h, w)
elif mask_type.startswith('interpolate'):
mask_f = []
for i in range(4):
mask_zero = torch.zeros(1,1,1,1,1, dtype=dtype, device=device)
mask_f.append(mask_zero)
mask_one = torch.ones(1,3,1,1,1, dtype=dtype, device=device)
mask_f.append(mask_one)
mask = torch.cat(mask_f, dim=1)
print(f'mask={mask}')
elif mask_type.startswith('tsr'):
mask_f = []
mask_zero = torch.zeros(1,1,1,1,1, dtype=dtype, device=device)
mask_one = torch.ones(1,3,1,1,1, dtype=dtype, device=device)
for i in range(15):
mask_f.append(mask_zero) # not masked
mask_f.append(mask_one) # masked
mask_f.append(mask_zero) # not masked
mask = torch.cat(mask_f, dim=1)
# print(f'before mask.shape = {mask.shape}, mask = {mask}') # [1, 61, 1, 1, 1]
mask = mask.expand(b, -1, c, h, w)
# print(f'after mask.shape = {mask.shape}, mask = {mask}') # [4, 61, 3, 256, 256]
else:
raise ValueError(f"Invalid mask type: {mask_type}")
return mask