weather-chatbot-phi3 / functions.py
VatsalPatel18's picture
Upload 6 files
de6500f verified
raw
history blame
12.3 kB
import requests
from collections import defaultdict
from datetime import datetime, timedelta
import json
import pandas as pd
import threading
import time
import os
import signal
api_key = "c6dfc4d92a8f972d237ef696ec87b37a"
def shutdown():
# Wait a bit before shutdown to allow the response to be returned
def stop():
time.sleep(1)
os.kill(os.getpid(), signal.SIGTERM) # Send SIGTERM to the current process to stop Gradio
os._exit(0)
threading.Thread(target=stop).start()
return "Shutting down and closing the Gradio window..."
def get_weather_info(city):
"""Fetches current weather information for a city using OpenWeatherMap API."""
url_current = f"http://api.openweathermap.org/data/2.5/weather?q={city}&appid={api_key}&units=metric"
response_current = requests.get(url_current)
if response_current.status_code != 200:
return "Error: Could not fetch weather data."
data_current = response_current.json()
weather_description = data_current['weather'][0]['description']
temperature_current = data_current['main']['temp']
temperature_feels_like = data_current['main']['feels_like']
temperature_min = data_current['main']['temp_min']
temperature_max = data_current['main']['temp_max']
pressure_sea_level = data_current['main'].get('sea_level', data_current['main']['pressure'])
pressure_ground_level = data_current['main'].get('grnd_level', data_current['main']['pressure'])
humidity = data_current['main']['humidity']
visibility = data_current['visibility']
wind_speed = data_current['wind']['speed']
wind_deg = data_current['wind']['deg']
clouds = data_current['clouds']['all']
rain = data_current.get('rain', {}).get('1h', 0)
dt = datetime.utcfromtimestamp(data_current['dt']).strftime('%Y-%m-%d %H:%M:%S')
timezone = data_current['timezone']
city_name = data_current['name']
response_code = data_current['cod']
formatted_info = (
f"Weather: {weather_description}, "
f"Temperature: current {temperature_current}°C, feels like {temperature_feels_like}°C, min {temperature_min}°C, max {temperature_max}°C, "
f"Pressure: sea level {pressure_sea_level} hPa, ground level {pressure_ground_level} hPa, "
f"Humidity: {humidity}%, "
f"Visibility: {visibility} meters, "
f"Wind: speed {wind_speed} m/s, deg {wind_deg}, "
f"Clouds: {clouds}%, "
f"Rain: {rain} mm, "
f"Date/Time: {dt}, "
f"Timezone: {timezone} seconds, "
f"City Name: {city_name}, "
f"Response Code: {response_code}"
)
return formatted_info
def get_forecast(city):
"""Fetches 2-day weather forecast for a city using OpenWeatherMap API and restructures the data into a table format."""
url_forecast = f"http://api.openweathermap.org/data/2.5/forecast?q={city}&appid={api_key}&units=metric"
response_forecast = requests.get(url_forecast)
if response_forecast.status_code != 200:
return "Error: Could not fetch forecast data."
forecast_json = response_forecast.json()
current_date = datetime.now().date()
forecast_dates = [current_date + timedelta(days=i) for i in range(1, 3)]
important_hours = ['09:00:00', '15:00:00', '21:00:00']
data = []
for entry in forecast_json['list']:
date, time = entry['dt_txt'].split()
date_obj = datetime.strptime(date, '%Y-%m-%d').date()
if date_obj in forecast_dates and time in important_hours:
data.append({
'Date': date,
'Time': time,
'Temperature': entry['main']['temp'],
'Feels Like': entry['main']['feels_like'],
'Temp Min': entry['main']['temp_min'],
'Temp Max': entry['main']['temp_max'],
'Pressure': entry['main']['pressure'],
'Humidity': entry['main']['humidity'],
'Weather': entry['weather'][0]['description'],
'Icon': entry['weather'][0]['icon'],
'Wind Speed': entry['wind']['speed'],
'Wind Deg': entry['wind']['deg'],
'Visibility': entry['visibility'],
'Pop': entry['pop'],
'Rain': entry['rain']['3h'] if 'rain' in entry else 0,
'Clouds': entry['clouds']['all']
})
df = pd.DataFrame(data)
df.set_index(['Date', 'Time'], inplace=True)
return df
def restructure_forecast_00(forecast_json):
"""Restructures the forecast JSON data into a single-line sentence format."""
current_date = datetime.now().date()
forecast_dates = [current_date + timedelta(days=i) for i in range(1, 3)]
important_hours = ['09:00:00', '12:00:00', '15:00:00', '18:00:00', '21:00:00']
structured_data = defaultdict(dict)
for entry in forecast_json['list']:
date, time = entry['dt_txt'].split()
date_obj = datetime.strptime(date, '%Y-%m-%d').date()
if date_obj in forecast_dates and time in important_hours:
structured_data[date][time] = {
'temperature': entry['main']['temp'],
'feels like': entry['main']['feels_like'],
'temp min': entry['main']['temp_min'],
'temp max': entry['main']['temp_max'],
'pressure': entry['main']['pressure'],
'humidity': entry['main']['humidity'],
'weather': entry['weather'][0]['description'],
'icon': entry['weather'][0]['icon'],
'wind speed': entry['wind']['speed'],
'wind deg': entry['wind']['deg'],
'visibility': entry['visibility'],
'pop': entry['pop'],
'rain': entry['rain']['3h'] if 'rain' in entry else 0,
'clouds': entry['clouds']['all']
}
return format_forecast(structured_data, forecast_dates)
def format_forecast_00(structured_data, forecast_dates):
"""Formats the structured forecast data into a single-line sentence format."""
formatted_forecast = []
for date in forecast_dates:
date_str = str(date)
for time, data in structured_data[date_str].items():
formatted_forecast.append(
f"{date_str} : {time} ( " +
", ".join(f"{key} - {value}" for key, value in data.items()) +
" )"
)
return "\n".join(formatted_forecast)
def restructure_forecast2(forecast_json):
"""Restructures the forecast JSON data into a nested dictionary by date and time, including the next three days."""
current_date = datetime.now().date()
forecast_dates = [current_date + timedelta(days=i) for i in range(1, 3)]
structured_data = defaultdict(dict)
for entry in forecast_json['list']:
date, time = entry['dt_txt'].split()
date_obj = datetime.strptime(date, '%Y-%m-%d').date()
if date_obj in forecast_dates:
structured_data[date][time] = {
'temperature': entry['main']['temp'],
'feels_like': entry['main']['feels_like'],
'temp_min': entry['main']['temp_min'],
'temp_max': entry['main']['temp_max'],
'pressure': entry['main']['pressure'],
'humidity': entry['main']['humidity'],
'weather': entry['weather'][0]['description'],
'icon': entry['weather'][0]['icon'],
'wind_speed': entry['wind']['speed'],
'wind_deg': entry['wind']['deg'],
'visibility': entry['visibility'],
'pop': entry['pop'],
'rain': entry['rain']['3h'] if 'rain' in entry else 0,
'clouds': entry['clouds']['all']
}
return {str(date): structured_data[str(date)] for date in forecast_dates}
def restructure_forecast_0(forecast_json):
"""Restructures the forecast JSON data into a nested dictionary by date and specific times."""
current_date = datetime.now().date()
forecast_dates = [current_date + timedelta(days=i) for i in range(1, 3)]
important_hours = ['09:00:00', '12:00:00', '15:00:00', '18:00:00', '21:00:00']
structured_data = defaultdict(dict)
for entry in forecast_json['list']:
date, time = entry['dt_txt'].split()
date_obj = datetime.strptime(date, '%Y-%m-%d').date()
if date_obj in forecast_dates and time in important_hours:
structured_data[date][time] = {
'temperature': entry['main']['temp'],
'feels_like': entry['main']['feels_like'],
'temp_min': entry['main']['temp_min'],
'temp_max': entry['main']['temp_max'],
'pressure': entry['main']['pressure'],
'humidity': entry['main']['humidity'],
'weather': entry['weather'][0]['description'],
'icon': entry['weather'][0]['icon'],
'wind_speed': entry['wind']['speed'],
'wind_deg': entry['wind']['deg'],
'visibility': entry['visibility'],
'pop': entry['pop'],
'rain': entry['rain']['3h'] if 'rain' in entry else 0,
'clouds': entry['clouds']['all']
}
return {str(date): structured_data[str(date)] for date in forecast_dates}
def restructure_forecast3(forecast_json):
"""Restructures the forecast JSON data into a nested dictionary by date and time, including the next three days."""
current_date = datetime.now().date()
forecast_dates = [current_date + timedelta(days=i) for i in range(1, 4)]
structured_data = defaultdict(dict)
for entry in forecast_json['list']:
date, time = entry['dt_txt'].split()
date_obj = datetime.strptime(date, '%Y-%m-%d').date()
if date_obj in forecast_dates:
structured_data[date][time] = {
'temperature': entry['main']['temp'],
'feels_like': entry['main']['feels_like'],
'temp_min': entry['main']['temp_min'],
'temp_max': entry['main']['temp_max'],
'pressure': entry['main']['pressure'],
'humidity': entry['main']['humidity'],
'weather': entry['weather'][0]['description'],
'icon': entry['weather'][0]['icon'],
'wind_speed': entry['wind']['speed'],
'wind_deg': entry['wind']['deg'],
'visibility': entry['visibility'],
'pop': entry['pop'],
'rain': entry['rain']['3h'] if 'rain' in entry else 0,
'clouds': entry['clouds']['all']
}
return {str(date): structured_data[str(date)] for date in forecast_dates}
def get_weather_info_0(city):
"""Fetches current weather information for a city using OpenWeatherMap API."""
url_current = f"http://api.openweathermap.org/data/2.5/weather?q={city}&appid={api_key}&units=metric"
response_current = requests.get(url_current)
if response_current.status_code != 200:
return "Error: Could not fetch weather data."
data_current = response_current.json()
response = {
'coordinates': data_current['coord'],
'weather': data_current['weather'][0],
'temperature': {
'current': data_current['main']['temp'],
'feels_like': data_current['main']['feels_like'],
'min': data_current['main']['temp_min'],
'max': data_current['main']['temp_max']
},
'pressure': {
'sea_level': data_current['main'].get('sea_level', data_current['main']['pressure']),
'ground_level': data_current['main'].get('grnd_level', data_current['main']['pressure'])
},
'humidity': data_current['main']['humidity'],
'visibility': data_current['visibility'],
'wind': data_current['wind'],
'clouds': data_current['clouds'],
'rain': data_current.get('rain', {}),
'dt': data_current['dt'],
'sys': data_current['sys'],
'timezone': data_current['timezone'],
'id': data_current['id'],
'name': data_current['name'],
'cod': data_current['cod']
}
return json.dumps(response, indent=2)