Spaces:
Sleeping
Sleeping
import gc | |
import numpy as np | |
import numpy | |
import torch | |
from diffusers import AutoencoderKL, LMSDiscreteScheduler, UNet2DConditionModel | |
from matplotlib import pyplot as plt | |
from pathlib import Path | |
from PIL import Image | |
from torch import autocast | |
from torchvision import transforms as tfms | |
from tqdm.auto import tqdm | |
from transformers import CLIPTextModel, CLIPTokenizer, logging | |
import os | |
from diffusers import StableDiffusionPipeline, DiffusionPipeline | |
# large or small model | |
# configurations | |
height, width = 128, 128 | |
guidance_scale = 8 | |
custom_loss_scale = 200 | |
batch_size = 1 | |
torch_device = "cuda" if torch.cuda.is_available() else "mps" if torch.backends.mps.is_available() else "cpu" | |
pretrained_model_name_or_path = "CompVis/stable-diffusion-v1-4" | |
pipe = DiffusionPipeline.from_pretrained( | |
pretrained_model_name_or_path, | |
torch_dtype=torch.float32 | |
).to(torch_device) | |
# Load SD concepts | |
sdconcepts = ['<morino-hon>', '<space-style>', '<tesla-bot>', '<midjourney-style>', ' <hanfu-anime-style>'] | |
pipe.load_textual_inversion("sd-concepts-library/morino-hon-style") | |
pipe.load_textual_inversion("sd-concepts-library/space-style") | |
pipe.load_textual_inversion("sd-concepts-library/tesla-bot") | |
pipe.load_textual_inversion("sd-concepts-library/midjourney-style") | |
pipe.load_textual_inversion("sd-concepts-library/hanfu-anime-style") | |
# define seeds | |
seed_list = [1, 2, 3, 4, 5] | |
def custom_loss(images): | |
# Gradient loss | |
gradient_x = torch.abs(images[:, :, :, :-1] - images[:, :, :, 1:]).mean() | |
gradient_y = torch.abs(images[:, :, :-1, :] - images[:, :, 1:, :]).mean() | |
error = gradient_x + gradient_y | |
#Variational loss | |
# diff_x = torch.abs(images[:, :, :, :-1] - images[:, :, :, 1:]) | |
# diff_y = torch.abs(images[:, :, :-1, :] - images[:, :, 1:, :]) | |
# error = diff_x.mean() + diff_y.mean() | |
return error | |
def latents_to_pil(latents): | |
# bath of latents -> list of images | |
latents = (1 / 0.18215) * latents | |
with torch.no_grad(): | |
image = pipe.vae.decode(latents).sample | |
image = (image / 2 + 0.5).clamp(0, 1) # 0 to 1 | |
image = image.detach().cpu().permute(0, 2, 3, 1).numpy() | |
images = (image * 255).round().astype("uint8") | |
pil_images = [Image.fromarray(image) for image in images] | |
return pil_images | |
def generate_latents(prompts, num_inference_steps, seed_nums, loss_apply=False): | |
generator = torch.manual_seed(seed_nums) | |
# scheduler | |
scheduler = LMSDiscreteScheduler(beta_start = 0.00085, beta_end = 0.012, beta_schedule = "scaled_linear", num_train_timesteps = 1000) | |
scheduler.set_timesteps(num_inference_steps) | |
scheduler.timesteps = scheduler.timesteps.to(torch.float32) | |
# text embeddings of the prompt | |
text_input = pipe.tokenizer(prompts, padding='max_length', max_length = pipe.tokenizer.model_max_length, truncation= True, return_tensors="pt") | |
input_ids = text_input.input_ids.to(torch_device) | |
with torch.no_grad(): | |
text_embeddings = pipe.text_encoder(text_input.input_ids.to(torch_device))[0] | |
max_length = text_input.input_ids.shape[-1] | |
uncond_input = pipe.tokenizer( | |
[""] * batch_size, padding="max_length", max_length= max_length, return_tensors="pt" | |
) | |
with torch.no_grad(): | |
uncond_embeddings = pipe.text_encoder(uncond_input.input_ids.to(torch_device))[0] | |
text_embeddings = torch.cat([uncond_embeddings,text_embeddings]) # 2,77,768 | |
# random latent | |
latents = torch.randn( | |
(batch_size, pipe.unet.config.in_channels, height// 8, width //8), | |
generator = generator, | |
) .to(torch.float16) | |
latents = latents.to(torch_device) | |
latents = latents * scheduler.init_noise_sigma | |
for i, t in tqdm(enumerate(scheduler.timesteps), total = len(scheduler.timesteps)): | |
latent_model_input = torch.cat([latents] * 2) | |
sigma = scheduler.sigmas[i] | |
latent_model_input = scheduler.scale_model_input(latent_model_input, t) | |
with torch.no_grad(): | |
noise_pred = pipe.unet(latent_model_input.to(torch.float32), t, encoder_hidden_states=text_embeddings)["sample"] | |
#noise_pred = pipe.unet(latent_model_input, t, encoder_hidden_states=text_embeddings)["sample"] | |
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) | |
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) | |
if (loss_apply and i%5 == 0): | |
latents = latents.detach().requires_grad_() | |
#latents_x0 = scheduler.step(noise_pred,t, latents).pred_original_sample # this line does not work | |
latents_x0 = latents - sigma * noise_pred | |
# use vae to decode the image | |
denoised_images = pipe.vae.decode((1/ 0.18215) * latents_x0).sample / 2 + 0.5 # range(0,1) | |
loss = custom_loss(denoised_images) * custom_loss_scale | |
print(f"Custom gradient loss {loss}") | |
cond_grad = torch.autograd.grad(loss, latents)[0] | |
latents = latents.detach() - cond_grad * sigma**2 | |
latents = scheduler.step(noise_pred,t, latents).prev_sample | |
return latents | |
# Function to convert PIL images to NumPy arrays | |
def pil_to_np(image): | |
return np.array(image) | |
def generate_gradio_images(prompt, num_inference_steps, loss_flag = False): | |
# after loss is applied | |
latents_list = [] | |
for seed_no, sd in zip(seed_list, sdconcepts): | |
prompts = [f'{prompt} {sd}'] | |
latents = generate_latents(prompts,num_inference_steps, seed_no, loss_apply=loss_flag) | |
latents_list.append(latents) | |
# show all | |
latents_list = torch.vstack(latents_list) | |
images = latents_to_pil(latents_list) | |
return images |