Spaces:
Sleeping
Sleeping
# GPT-3 Paper | |
# add cosing delay | |
import os | |
import math | |
import time | |
import inspect | |
from dataclasses import dataclass | |
import torch | |
import torch.nn as nn | |
from torch.nn import functional as F | |
class CausalSelfAttention(nn.Module): | |
def __init__(self, config): | |
super().__init__() | |
assert config.n_embd % config.n_head == 0 | |
# key, query, value projections for all heads, but in a batch | |
self.c_attn = nn.Linear(config.n_embd, 3 * config.n_embd) | |
# output projection | |
self.c_proj = nn.Linear(config.n_embd, config.n_embd) | |
self.c_proj.NANGPT_SCALE_INIT = 1 | |
# regularization | |
self.n_head = config.n_head | |
self.n_embd = config.n_embd | |
self.register_buffer( | |
"bias", | |
torch.tril(torch.ones(config.block_size, config.block_size)).view( | |
1, 1, config.block_size, config.block_size | |
), | |
) | |
def forward(self, x): | |
B, T, C = ( | |
x.size() | |
) # batch size, sequence length, embedding dimensionality (n_embd) | |
# calculate query, key, values for all heads in batch and move head forward to be the batch dim | |
# nh is "number of heads", hs is "head size", and C (number of channels) = nh * hs | |
# e.g. in GPT-2 (124M), n_head=12, hs=64, so nh*hs=C=768 channels in the Transformer | |
qkv = self.c_attn(x) | |
q, k, v = qkv.split(self.n_embd, dim=2) | |
k = k.view(B, T, self.n_head, C // self.n_head).transpose( | |
1, 2 | |
) # (B, nh, T, hs) | |
q = q.view(B, T, self.n_head, C // self.n_head).transpose( | |
1, 2 | |
) # (B, nh, T, hs) | |
v = v.view(B, T, self.n_head, C // self.n_head).transpose( | |
1, 2 | |
) # (B, nh, T, hs) | |
# att = (q @ k.transpose(-2, -1)) * (1.0 / math.sqrt(k.size(-1))) | |
# att = att.masked_fill(self.bias[:, :, :T, :T] == 0, float('-inf')) | |
# att = F.softmax(att, dim=-1) | |
# y = att @ v # (B, nh, T, T) x (B, nh, T, hs) -> (B, nh, T, hs) | |
y = F.scaled_dot_product_attention(q, k, v, is_causal=True) # Flash attention | |
y = ( | |
y.transpose(1, 2).contiguous().view(B, T, C) | |
) # re-assemble all head outputs side by side | |
# output projection | |
y = self.c_proj(y) | |
return y | |
class MLP(nn.Module): | |
def __init__(self, config): | |
super().__init__() | |
self.c_fc = nn.Linear(config.n_embd, 4 * config.n_embd) | |
self.gelu = nn.GELU(approximate="tanh") | |
self.c_proj = nn.Linear(4 * config.n_embd, config.n_embd) | |
self.c_proj.NANOGPT_SCALE_INIT = 1 | |
def forward(self, x): | |
x = self.c_fc(x) | |
x = self.gelu(x) | |
x = self.c_proj(x) | |
return x | |
class Block(nn.Module): | |
def __init__(self, config): | |
super().__init__() | |
self.ln_1 = nn.LayerNorm(config.n_embd) | |
self.attn = CausalSelfAttention(config) | |
self.ln_2 = nn.LayerNorm(config.n_embd) | |
self.mlp = MLP(config) | |
def forward(self, x): | |
x = x + self.attn(self.ln_1(x)) | |
x = x + self.mlp(self.ln_2(x)) | |
return x | |
class GPTConfig: | |
block_size: int = 1024 # max sequence length | |
vocab_size: int = ( | |
50304 # number of tokens: 50,000 BPE merges + 256 bytes tokens + 1 <|endoftext|> token | |
) | |
n_layer: int = 12 # number of layers | |
n_head: int = 12 # number of heads | |
n_embd: int = 768 # embedding dimension | |
class GPT(nn.Module): | |
def __init__(self, config): | |
super().__init__() | |
self.config = config | |
self.transformer = nn.ModuleDict( | |
dict( | |
wte=nn.Embedding(config.vocab_size, config.n_embd), | |
wpe=nn.Embedding(config.block_size, config.n_embd), | |
h=nn.ModuleList([Block(config) for _ in range(config.n_layer)]), | |
ln_f=nn.LayerNorm(config.n_embd), | |
) | |
) | |
self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False) | |
# weight sharing | |
self.transformer.wte.weight = self.lm_head.weight | |
# weight initialization | |
self.apply(self._init_weights) | |
def _init_weights(self, module): | |
if isinstance(module, nn.Linear): | |
std = 0.02 | |
if hasattr(module, "NANGPT_SCALE_INIT"): | |
std *= (2 * self.config.n_layer) ** -0.5 | |
torch.nn.init.normal_(module.weight, mean=0.0, std=std) | |
if module.bias is not None: | |
torch.nn.init.zeros_(module.bias) | |
elif isinstance(module, nn.Embedding): | |
torch.nn.init.normal_(module.weight, mean=0.0, std=0.02) | |
def forward(self, idx, targets=None): | |
# idx is of shape (B, T) | |
B, T = idx.size() | |
assert ( | |
T <= self.config.block_size | |
), f"Cannot forward sequence of length {T}, block size is only {self.config.block_size}" | |
# forward the token and posisition embeddings | |
pos = torch.arange(0, T, dtype=torch.long, device=idx.device) # shape (T) | |
pos_emb = self.transformer.wpe(pos) # position embeddings of shape (T, n_embd) | |
tok_emb = self.transformer.wte(idx) # token embeddings of shape (B, T, n_embd) | |
x = tok_emb + pos_emb | |
# forward the blocks of the transformer | |
for block in self.transformer.h: | |
x = block(x) | |
# forward the final layernorm and the classifier | |
x = self.transformer.ln_f(x) | |
logits = self.lm_head(x) # (B, T, vocab_size) | |
loss = None | |
if targets is not None: | |
loss = F.cross_entropy(logits.view(-1, logits.size(-1)), targets.view(-1)) | |
return logits, loss | |
def from_pretrained(cls, model_type): | |
"""Loads pretrained GPT-2 model weights from huggingface""" | |
assert model_type in {"gpt2", "gpt2-medium", "gpt2-large", "gpt2-xl"} | |
from transformers import GPT2LMHeadModel | |
print("loading weights from pretrained gpt: %s" % model_type) | |
# n_layer, n_head and n_embd are determined from model_type | |
config_args = { | |
"gpt2": dict(n_layer=12, n_head=12, n_embd=768), # 124M params | |
"gpt2-medium": dict(n_layer=24, n_head=16, n_embd=1024), # 350M params | |
"gpt2-large": dict(n_layer=36, n_head=20, n_embd=1280), # 774M params | |
"gpt2-xl": dict(n_layer=48, n_head=25, n_embd=1600), # 1558M params | |
}[model_type] | |
config_args["vocab_size"] = 50257 # always 50257 for GPT model checkpoints | |
config_args["block_size"] = 1024 # always 1024 for GPT model checkpoints | |
# create a from-scratch initialized minGPT model | |
config = GPTConfig(**config_args) | |
model = GPT(config) | |
sd = model.state_dict() | |
sd_keys = sd.keys() | |
sd_keys = [ | |
k for k in sd_keys if not k.endswith(".attn.bias") | |
] # discard this mask / buffer, not a param | |
# init a huggingface/transformers model | |
model_hf = GPT2LMHeadModel.from_pretrained(model_type) | |
sd_hf = model_hf.state_dict() | |
# copy while ensuring all of the parameters are aligned and match in names and shapes | |
sd_keys_hf = sd_hf.keys() | |
sd_keys_hf = [ | |
k for k in sd_keys_hf if not k.endswith(".attn.masked_bias") | |
] # ignore these, just a buffer | |
sd_keys_hf = [ | |
k for k in sd_keys_hf if not k.endswith(".attn.bias") | |
] # same, just the mask (buffer) | |
transposed = [ | |
"attn.c_attn.weight", | |
"attn.c_proj.weight", | |
"mlp.c_fc.weight", | |
"mlp.c_proj.weight", | |
] | |
# basically the openai checkpoints use a "Conv1D" module, but we only want to use a vanilla Linear | |
# this means that we have to transpose these weights when we import them | |
assert len(sd_keys_hf) == len( | |
sd_keys | |
), f"mismatched keys: {len(sd_keys_hf)} != {len(sd_keys)}" | |
for k in sd_keys_hf: | |
if any(k.endswith(w) for w in transposed): | |
# special treatment for the Conv1D weights we need to transpose | |
assert sd_hf[k].shape[::-1] == sd[k].shape | |
with torch.no_grad(): | |
sd[k].copy_(sd_hf[k].t()) | |
else: | |
# vanilla copy over the other parameters | |
assert sd_hf[k].shape == sd[k].shape | |
with torch.no_grad(): | |
sd[k].copy_(sd_hf[k]) | |
return model | |
def configure_optimizers(self, weight_decay, learning_rate, device_type): | |
# start with all of the candidate parameters (that require grad) | |
param_dict = {pn: p for pn, p in self.named_parameters()} | |
param_dict = {pn: p for pn, p in param_dict.items() if p.requires_grad} | |
# create optim groups. Any parameters that is 2D will be weight decayed, otherwise no. | |
# i.e. all weight tensors in matmuls + embeddings decay, all biases and layernorms don't. | |
decay_params = [p for n, p in param_dict.items() if p.dim() >= 2] | |
nodecay_params = [p for n, p in param_dict.items() if p.dim() < 2] | |
optim_groups = [ | |
{"params": decay_params, "weight_decay": weight_decay}, | |
{"params": nodecay_params, "weight_decay": 0.0}, | |
] | |
num_decay_params = sum(p.numel() for p in decay_params) | |
num_nodecay_params = sum(p.numel() for p in nodecay_params) | |
print( | |
f"num decayed parameter tensors: {len(decay_params)}, with {num_decay_params:,} parameters" | |
) | |
print( | |
f"num non-decayed parameter tensors: {len(nodecay_params)}, with {num_nodecay_params:,} parameters" | |
) | |
# Create AdamW optimizer and use the fused version if it is available | |
fused_available = "fused" in inspect.signature(torch.optim.AdamW).parameters | |
use_fused = fused_available and device_type == "cuda" | |
print(f"using fused AdamW: {use_fused}") | |
optimizer = torch.optim.AdamW( | |
optim_groups, lr=learning_rate, betas=(0.9, 0.95), eps=1e-8, fused=use_fused | |
) | |
return optimizer |