ERAV2_S21_124Model / model.py
Vasudevakrishna's picture
Upload 4 files
1248b58 verified
raw
history blame
10.4 kB
# GPT-3 Paper
# add cosing delay
import os
import math
import time
import inspect
from dataclasses import dataclass
import torch
import torch.nn as nn
from torch.nn import functional as F
class CausalSelfAttention(nn.Module):
def __init__(self, config):
super().__init__()
assert config.n_embd % config.n_head == 0
# key, query, value projections for all heads, but in a batch
self.c_attn = nn.Linear(config.n_embd, 3 * config.n_embd)
# output projection
self.c_proj = nn.Linear(config.n_embd, config.n_embd)
self.c_proj.NANGPT_SCALE_INIT = 1
# regularization
self.n_head = config.n_head
self.n_embd = config.n_embd
self.register_buffer(
"bias",
torch.tril(torch.ones(config.block_size, config.block_size)).view(
1, 1, config.block_size, config.block_size
),
)
def forward(self, x):
B, T, C = (
x.size()
) # batch size, sequence length, embedding dimensionality (n_embd)
# calculate query, key, values for all heads in batch and move head forward to be the batch dim
# nh is "number of heads", hs is "head size", and C (number of channels) = nh * hs
# e.g. in GPT-2 (124M), n_head=12, hs=64, so nh*hs=C=768 channels in the Transformer
qkv = self.c_attn(x)
q, k, v = qkv.split(self.n_embd, dim=2)
k = k.view(B, T, self.n_head, C // self.n_head).transpose(
1, 2
) # (B, nh, T, hs)
q = q.view(B, T, self.n_head, C // self.n_head).transpose(
1, 2
) # (B, nh, T, hs)
v = v.view(B, T, self.n_head, C // self.n_head).transpose(
1, 2
) # (B, nh, T, hs)
# att = (q @ k.transpose(-2, -1)) * (1.0 / math.sqrt(k.size(-1)))
# att = att.masked_fill(self.bias[:, :, :T, :T] == 0, float('-inf'))
# att = F.softmax(att, dim=-1)
# y = att @ v # (B, nh, T, T) x (B, nh, T, hs) -> (B, nh, T, hs)
y = F.scaled_dot_product_attention(q, k, v, is_causal=True) # Flash attention
y = (
y.transpose(1, 2).contiguous().view(B, T, C)
) # re-assemble all head outputs side by side
# output projection
y = self.c_proj(y)
return y
class MLP(nn.Module):
def __init__(self, config):
super().__init__()
self.c_fc = nn.Linear(config.n_embd, 4 * config.n_embd)
self.gelu = nn.GELU(approximate="tanh")
self.c_proj = nn.Linear(4 * config.n_embd, config.n_embd)
self.c_proj.NANOGPT_SCALE_INIT = 1
def forward(self, x):
x = self.c_fc(x)
x = self.gelu(x)
x = self.c_proj(x)
return x
class Block(nn.Module):
def __init__(self, config):
super().__init__()
self.ln_1 = nn.LayerNorm(config.n_embd)
self.attn = CausalSelfAttention(config)
self.ln_2 = nn.LayerNorm(config.n_embd)
self.mlp = MLP(config)
def forward(self, x):
x = x + self.attn(self.ln_1(x))
x = x + self.mlp(self.ln_2(x))
return x
@dataclass
class GPTConfig:
block_size: int = 1024 # max sequence length
vocab_size: int = (
50304 # number of tokens: 50,000 BPE merges + 256 bytes tokens + 1 <|endoftext|> token
)
n_layer: int = 12 # number of layers
n_head: int = 12 # number of heads
n_embd: int = 768 # embedding dimension
class GPT(nn.Module):
def __init__(self, config):
super().__init__()
self.config = config
self.transformer = nn.ModuleDict(
dict(
wte=nn.Embedding(config.vocab_size, config.n_embd),
wpe=nn.Embedding(config.block_size, config.n_embd),
h=nn.ModuleList([Block(config) for _ in range(config.n_layer)]),
ln_f=nn.LayerNorm(config.n_embd),
)
)
self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False)
# weight sharing
self.transformer.wte.weight = self.lm_head.weight
# weight initialization
self.apply(self._init_weights)
def _init_weights(self, module):
if isinstance(module, nn.Linear):
std = 0.02
if hasattr(module, "NANGPT_SCALE_INIT"):
std *= (2 * self.config.n_layer) ** -0.5
torch.nn.init.normal_(module.weight, mean=0.0, std=std)
if module.bias is not None:
torch.nn.init.zeros_(module.bias)
elif isinstance(module, nn.Embedding):
torch.nn.init.normal_(module.weight, mean=0.0, std=0.02)
def forward(self, idx, targets=None):
# idx is of shape (B, T)
B, T = idx.size()
assert (
T <= self.config.block_size
), f"Cannot forward sequence of length {T}, block size is only {self.config.block_size}"
# forward the token and posisition embeddings
pos = torch.arange(0, T, dtype=torch.long, device=idx.device) # shape (T)
pos_emb = self.transformer.wpe(pos) # position embeddings of shape (T, n_embd)
tok_emb = self.transformer.wte(idx) # token embeddings of shape (B, T, n_embd)
x = tok_emb + pos_emb
# forward the blocks of the transformer
for block in self.transformer.h:
x = block(x)
# forward the final layernorm and the classifier
x = self.transformer.ln_f(x)
logits = self.lm_head(x) # (B, T, vocab_size)
loss = None
if targets is not None:
loss = F.cross_entropy(logits.view(-1, logits.size(-1)), targets.view(-1))
return logits, loss
@classmethod
def from_pretrained(cls, model_type):
"""Loads pretrained GPT-2 model weights from huggingface"""
assert model_type in {"gpt2", "gpt2-medium", "gpt2-large", "gpt2-xl"}
from transformers import GPT2LMHeadModel
print("loading weights from pretrained gpt: %s" % model_type)
# n_layer, n_head and n_embd are determined from model_type
config_args = {
"gpt2": dict(n_layer=12, n_head=12, n_embd=768), # 124M params
"gpt2-medium": dict(n_layer=24, n_head=16, n_embd=1024), # 350M params
"gpt2-large": dict(n_layer=36, n_head=20, n_embd=1280), # 774M params
"gpt2-xl": dict(n_layer=48, n_head=25, n_embd=1600), # 1558M params
}[model_type]
config_args["vocab_size"] = 50257 # always 50257 for GPT model checkpoints
config_args["block_size"] = 1024 # always 1024 for GPT model checkpoints
# create a from-scratch initialized minGPT model
config = GPTConfig(**config_args)
model = GPT(config)
sd = model.state_dict()
sd_keys = sd.keys()
sd_keys = [
k for k in sd_keys if not k.endswith(".attn.bias")
] # discard this mask / buffer, not a param
# init a huggingface/transformers model
model_hf = GPT2LMHeadModel.from_pretrained(model_type)
sd_hf = model_hf.state_dict()
# copy while ensuring all of the parameters are aligned and match in names and shapes
sd_keys_hf = sd_hf.keys()
sd_keys_hf = [
k for k in sd_keys_hf if not k.endswith(".attn.masked_bias")
] # ignore these, just a buffer
sd_keys_hf = [
k for k in sd_keys_hf if not k.endswith(".attn.bias")
] # same, just the mask (buffer)
transposed = [
"attn.c_attn.weight",
"attn.c_proj.weight",
"mlp.c_fc.weight",
"mlp.c_proj.weight",
]
# basically the openai checkpoints use a "Conv1D" module, but we only want to use a vanilla Linear
# this means that we have to transpose these weights when we import them
assert len(sd_keys_hf) == len(
sd_keys
), f"mismatched keys: {len(sd_keys_hf)} != {len(sd_keys)}"
for k in sd_keys_hf:
if any(k.endswith(w) for w in transposed):
# special treatment for the Conv1D weights we need to transpose
assert sd_hf[k].shape[::-1] == sd[k].shape
with torch.no_grad():
sd[k].copy_(sd_hf[k].t())
else:
# vanilla copy over the other parameters
assert sd_hf[k].shape == sd[k].shape
with torch.no_grad():
sd[k].copy_(sd_hf[k])
return model
def configure_optimizers(self, weight_decay, learning_rate, device_type):
# start with all of the candidate parameters (that require grad)
param_dict = {pn: p for pn, p in self.named_parameters()}
param_dict = {pn: p for pn, p in param_dict.items() if p.requires_grad}
# create optim groups. Any parameters that is 2D will be weight decayed, otherwise no.
# i.e. all weight tensors in matmuls + embeddings decay, all biases and layernorms don't.
decay_params = [p for n, p in param_dict.items() if p.dim() >= 2]
nodecay_params = [p for n, p in param_dict.items() if p.dim() < 2]
optim_groups = [
{"params": decay_params, "weight_decay": weight_decay},
{"params": nodecay_params, "weight_decay": 0.0},
]
num_decay_params = sum(p.numel() for p in decay_params)
num_nodecay_params = sum(p.numel() for p in nodecay_params)
print(
f"num decayed parameter tensors: {len(decay_params)}, with {num_decay_params:,} parameters"
)
print(
f"num non-decayed parameter tensors: {len(nodecay_params)}, with {num_nodecay_params:,} parameters"
)
# Create AdamW optimizer and use the fused version if it is available
fused_available = "fused" in inspect.signature(torch.optim.AdamW).parameters
use_fused = fused_available and device_type == "cuda"
print(f"using fused AdamW: {use_fused}")
optimizer = torch.optim.AdamW(
optim_groups, lr=learning_rate, betas=(0.9, 0.95), eps=1e-8, fused=use_fused
)
return optimizer