Spaces:
Sleeping
Sleeping
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from utils.metrics import bbox_iou | |
def select_candidates_in_gts(xy_centers, gt_bboxes, eps=1e-9): | |
"""select the positive anchor center in gt | |
Args: | |
xy_centers (Tensor): shape(h*w, 4) | |
gt_bboxes (Tensor): shape(b, n_boxes, 4) | |
Return: | |
(Tensor): shape(b, n_boxes, h*w) | |
""" | |
n_anchors = xy_centers.shape[0] | |
bs, n_boxes, _ = gt_bboxes.shape | |
lt, rb = gt_bboxes.view(-1, 1, 4).chunk(2, 2) # left-top, right-bottom | |
bbox_deltas = torch.cat((xy_centers[None] - lt, rb - xy_centers[None]), dim=2).view(bs, n_boxes, n_anchors, -1) | |
# return (bbox_deltas.min(3)[0] > eps).to(gt_bboxes.dtype) | |
return bbox_deltas.amin(3).gt_(eps) | |
def select_highest_overlaps(mask_pos, overlaps, n_max_boxes): | |
"""if an anchor box is assigned to multiple gts, | |
the one with the highest iou will be selected. | |
Args: | |
mask_pos (Tensor): shape(b, n_max_boxes, h*w) | |
overlaps (Tensor): shape(b, n_max_boxes, h*w) | |
Return: | |
target_gt_idx (Tensor): shape(b, h*w) | |
fg_mask (Tensor): shape(b, h*w) | |
mask_pos (Tensor): shape(b, n_max_boxes, h*w) | |
""" | |
# (b, n_max_boxes, h*w) -> (b, h*w) | |
fg_mask = mask_pos.sum(-2) | |
if fg_mask.max() > 1: # one anchor is assigned to multiple gt_bboxes | |
mask_multi_gts = (fg_mask.unsqueeze(1) > 1).repeat([1, n_max_boxes, 1]) # (b, n_max_boxes, h*w) | |
max_overlaps_idx = overlaps.argmax(1) # (b, h*w) | |
is_max_overlaps = F.one_hot(max_overlaps_idx, n_max_boxes) # (b, h*w, n_max_boxes) | |
is_max_overlaps = is_max_overlaps.permute(0, 2, 1).to(overlaps.dtype) # (b, n_max_boxes, h*w) | |
mask_pos = torch.where(mask_multi_gts, is_max_overlaps, mask_pos) # (b, n_max_boxes, h*w) | |
fg_mask = mask_pos.sum(-2) | |
# find each grid serve which gt(index) | |
target_gt_idx = mask_pos.argmax(-2) # (b, h*w) | |
return target_gt_idx, fg_mask, mask_pos | |
class TaskAlignedAssigner(nn.Module): | |
def __init__(self, topk=13, num_classes=80, alpha=1.0, beta=6.0, eps=1e-9): | |
super().__init__() | |
self.topk = topk | |
self.num_classes = num_classes | |
self.bg_idx = num_classes | |
self.alpha = alpha | |
self.beta = beta | |
self.eps = eps | |
def forward(self, pd_scores, pd_bboxes, anc_points, gt_labels, gt_bboxes, mask_gt): | |
"""This code referenced to | |
https://github.com/Nioolek/PPYOLOE_pytorch/blob/master/ppyoloe/assigner/tal_assigner.py | |
Args: | |
pd_scores (Tensor): shape(bs, num_total_anchors, num_classes) | |
pd_bboxes (Tensor): shape(bs, num_total_anchors, 4) | |
anc_points (Tensor): shape(num_total_anchors, 2) | |
gt_labels (Tensor): shape(bs, n_max_boxes, 1) | |
gt_bboxes (Tensor): shape(bs, n_max_boxes, 4) | |
mask_gt (Tensor): shape(bs, n_max_boxes, 1) | |
Returns: | |
target_labels (Tensor): shape(bs, num_total_anchors) | |
target_bboxes (Tensor): shape(bs, num_total_anchors, 4) | |
target_scores (Tensor): shape(bs, num_total_anchors, num_classes) | |
fg_mask (Tensor): shape(bs, num_total_anchors) | |
""" | |
self.bs = pd_scores.size(0) | |
self.n_max_boxes = gt_bboxes.size(1) | |
if self.n_max_boxes == 0: | |
device = gt_bboxes.device | |
return (torch.full_like(pd_scores[..., 0], self.bg_idx).to(device), | |
torch.zeros_like(pd_bboxes).to(device), | |
torch.zeros_like(pd_scores).to(device), | |
torch.zeros_like(pd_scores[..., 0]).to(device)) | |
mask_pos, align_metric, overlaps = self.get_pos_mask(pd_scores, pd_bboxes, gt_labels, gt_bboxes, anc_points, | |
mask_gt) | |
target_gt_idx, fg_mask, mask_pos = select_highest_overlaps(mask_pos, overlaps, self.n_max_boxes) | |
# assigned target | |
target_labels, target_bboxes, target_scores = self.get_targets(gt_labels, gt_bboxes, target_gt_idx, fg_mask) | |
# normalize | |
align_metric *= mask_pos | |
pos_align_metrics = align_metric.amax(axis=-1, keepdim=True) # b, max_num_obj | |
pos_overlaps = (overlaps * mask_pos).amax(axis=-1, keepdim=True) # b, max_num_obj | |
norm_align_metric = (align_metric * pos_overlaps / (pos_align_metrics + self.eps)).amax(-2).unsqueeze(-1) | |
target_scores = target_scores * norm_align_metric | |
return target_labels, target_bboxes, target_scores, fg_mask.bool() | |
def get_pos_mask(self, pd_scores, pd_bboxes, gt_labels, gt_bboxes, anc_points, mask_gt): | |
# get anchor_align metric, (b, max_num_obj, h*w) | |
align_metric, overlaps = self.get_box_metrics(pd_scores, pd_bboxes, gt_labels, gt_bboxes) | |
# get in_gts mask, (b, max_num_obj, h*w) | |
mask_in_gts = select_candidates_in_gts(anc_points, gt_bboxes) | |
# get topk_metric mask, (b, max_num_obj, h*w) | |
mask_topk = self.select_topk_candidates(align_metric * mask_in_gts, | |
topk_mask=mask_gt.repeat([1, 1, self.topk]).bool()) | |
# merge all mask to a final mask, (b, max_num_obj, h*w) | |
mask_pos = mask_topk * mask_in_gts * mask_gt | |
return mask_pos, align_metric, overlaps | |
def get_box_metrics(self, pd_scores, pd_bboxes, gt_labels, gt_bboxes): | |
gt_labels = gt_labels.to(torch.long) # b, max_num_obj, 1 | |
ind = torch.zeros([2, self.bs, self.n_max_boxes], dtype=torch.long) # 2, b, max_num_obj | |
ind[0] = torch.arange(end=self.bs).view(-1, 1).repeat(1, self.n_max_boxes) # b, max_num_obj | |
ind[1] = gt_labels.squeeze(-1) # b, max_num_obj | |
# get the scores of each grid for each gt cls | |
bbox_scores = pd_scores[ind[0], :, ind[1]] # b, max_num_obj, h*w | |
overlaps = bbox_iou(gt_bboxes.unsqueeze(2), pd_bboxes.unsqueeze(1), xywh=False, CIoU=True).squeeze(3).clamp(0) | |
align_metric = bbox_scores.pow(self.alpha) * overlaps.pow(self.beta) | |
return align_metric, overlaps | |
def select_topk_candidates(self, metrics, largest=True, topk_mask=None): | |
""" | |
Args: | |
metrics: (b, max_num_obj, h*w). | |
topk_mask: (b, max_num_obj, topk) or None | |
""" | |
num_anchors = metrics.shape[-1] # h*w | |
# (b, max_num_obj, topk) | |
topk_metrics, topk_idxs = torch.topk(metrics, self.topk, dim=-1, largest=largest) | |
if topk_mask is None: | |
topk_mask = (topk_metrics.max(-1, keepdim=True) > self.eps).tile([1, 1, self.topk]) | |
# (b, max_num_obj, topk) | |
topk_idxs = torch.where(topk_mask, topk_idxs, 0) | |
# (b, max_num_obj, topk, h*w) -> (b, max_num_obj, h*w) | |
is_in_topk = F.one_hot(topk_idxs, num_anchors).sum(-2) | |
# filter invalid bboxes | |
# assigned topk should be unique, this is for dealing with empty labels | |
# since empty labels will generate index `0` through `F.one_hot` | |
# NOTE: but what if the topk_idxs include `0`? | |
is_in_topk = torch.where(is_in_topk > 1, 0, is_in_topk) | |
return is_in_topk.to(metrics.dtype) | |
def get_targets(self, gt_labels, gt_bboxes, target_gt_idx, fg_mask): | |
""" | |
Args: | |
gt_labels: (b, max_num_obj, 1) | |
gt_bboxes: (b, max_num_obj, 4) | |
target_gt_idx: (b, h*w) | |
fg_mask: (b, h*w) | |
""" | |
# assigned target labels, (b, 1) | |
batch_ind = torch.arange(end=self.bs, dtype=torch.int64, device=gt_labels.device)[..., None] | |
target_gt_idx = target_gt_idx + batch_ind * self.n_max_boxes # (b, h*w) | |
target_labels = gt_labels.long().flatten()[target_gt_idx] # (b, h*w) | |
# assigned target boxes, (b, max_num_obj, 4) -> (b, h*w) | |
target_bboxes = gt_bboxes.view(-1, 4)[target_gt_idx] | |
# assigned target scores | |
target_labels.clamp(0) | |
target_scores = F.one_hot(target_labels, self.num_classes) # (b, h*w, 80) | |
fg_scores_mask = fg_mask[:, :, None].repeat(1, 1, self.num_classes) # (b, h*w, 80) | |
target_scores = torch.where(fg_scores_mask > 0, target_scores, 0) | |
return target_labels, target_bboxes, target_scores | |