ERAV2_S15 / utils /segment /dataloaders.py
Vasudevakrishna's picture
S15 added.
f267ae4
raw
history blame contribute delete
No virus
13.9 kB
import os
import random
import cv2
import numpy as np
import torch
from torch.utils.data import DataLoader, distributed
from ..augmentations import augment_hsv, copy_paste, letterbox
from ..dataloaders import InfiniteDataLoader, LoadImagesAndLabels, seed_worker
from ..general import LOGGER, xyn2xy, xywhn2xyxy, xyxy2xywhn
from ..torch_utils import torch_distributed_zero_first
from .augmentations import mixup, random_perspective
RANK = int(os.getenv('RANK', -1))
def create_dataloader(path,
imgsz,
batch_size,
stride,
single_cls=False,
hyp=None,
augment=False,
cache=False,
pad=0.0,
rect=False,
rank=-1,
workers=8,
image_weights=False,
close_mosaic=False,
quad=False,
prefix='',
shuffle=False,
mask_downsample_ratio=1,
overlap_mask=False):
if rect and shuffle:
LOGGER.warning('WARNING ⚠️ --rect is incompatible with DataLoader shuffle, setting shuffle=False')
shuffle = False
with torch_distributed_zero_first(rank): # init dataset *.cache only once if DDP
dataset = LoadImagesAndLabelsAndMasks(
path,
imgsz,
batch_size,
augment=augment, # augmentation
hyp=hyp, # hyperparameters
rect=rect, # rectangular batches
cache_images=cache,
single_cls=single_cls,
stride=int(stride),
pad=pad,
image_weights=image_weights,
prefix=prefix,
downsample_ratio=mask_downsample_ratio,
overlap=overlap_mask)
batch_size = min(batch_size, len(dataset))
nd = torch.cuda.device_count() # number of CUDA devices
nw = min([os.cpu_count() // max(nd, 1), batch_size if batch_size > 1 else 0, workers]) # number of workers
sampler = None if rank == -1 else distributed.DistributedSampler(dataset, shuffle=shuffle)
#loader = DataLoader if image_weights else InfiniteDataLoader # only DataLoader allows for attribute updates
loader = DataLoader if image_weights or close_mosaic else InfiniteDataLoader
generator = torch.Generator()
generator.manual_seed(6148914691236517205 + RANK)
return loader(
dataset,
batch_size=batch_size,
shuffle=shuffle and sampler is None,
num_workers=nw,
sampler=sampler,
pin_memory=True,
collate_fn=LoadImagesAndLabelsAndMasks.collate_fn4 if quad else LoadImagesAndLabelsAndMasks.collate_fn,
worker_init_fn=seed_worker,
generator=generator,
), dataset
class LoadImagesAndLabelsAndMasks(LoadImagesAndLabels): # for training/testing
def __init__(
self,
path,
img_size=640,
batch_size=16,
augment=False,
hyp=None,
rect=False,
image_weights=False,
cache_images=False,
single_cls=False,
stride=32,
pad=0,
min_items=0,
prefix="",
downsample_ratio=1,
overlap=False,
):
super().__init__(path, img_size, batch_size, augment, hyp, rect, image_weights, cache_images, single_cls,
stride, pad, min_items, prefix)
self.downsample_ratio = downsample_ratio
self.overlap = overlap
def __getitem__(self, index):
index = self.indices[index] # linear, shuffled, or image_weights
hyp = self.hyp
mosaic = self.mosaic and random.random() < hyp['mosaic']
masks = []
if mosaic:
# Load mosaic
img, labels, segments = self.load_mosaic(index)
shapes = None
# MixUp augmentation
if random.random() < hyp["mixup"]:
img, labels, segments = mixup(img, labels, segments, *self.load_mosaic(random.randint(0, self.n - 1)))
else:
# Load image
img, (h0, w0), (h, w) = self.load_image(index)
# Letterbox
shape = self.batch_shapes[self.batch[index]] if self.rect else self.img_size # final letterboxed shape
img, ratio, pad = letterbox(img, shape, auto=False, scaleup=self.augment)
shapes = (h0, w0), ((h / h0, w / w0), pad) # for COCO mAP rescaling
labels = self.labels[index].copy()
# [array, array, ....], array.shape=(num_points, 2), xyxyxyxy
segments = self.segments[index].copy()
if len(segments):
for i_s in range(len(segments)):
segments[i_s] = xyn2xy(
segments[i_s],
ratio[0] * w,
ratio[1] * h,
padw=pad[0],
padh=pad[1],
)
if labels.size: # normalized xywh to pixel xyxy format
labels[:, 1:] = xywhn2xyxy(labels[:, 1:], ratio[0] * w, ratio[1] * h, padw=pad[0], padh=pad[1])
if self.augment:
img, labels, segments = random_perspective(img,
labels,
segments=segments,
degrees=hyp["degrees"],
translate=hyp["translate"],
scale=hyp["scale"],
shear=hyp["shear"],
perspective=hyp["perspective"])
nl = len(labels) # number of labels
if nl:
labels[:, 1:5] = xyxy2xywhn(labels[:, 1:5], w=img.shape[1], h=img.shape[0], clip=True, eps=1e-3)
if self.overlap:
masks, sorted_idx = polygons2masks_overlap(img.shape[:2],
segments,
downsample_ratio=self.downsample_ratio)
masks = masks[None] # (640, 640) -> (1, 640, 640)
labels = labels[sorted_idx]
else:
masks = polygons2masks(img.shape[:2], segments, color=1, downsample_ratio=self.downsample_ratio)
masks = (torch.from_numpy(masks) if len(masks) else torch.zeros(1 if self.overlap else nl, img.shape[0] //
self.downsample_ratio, img.shape[1] //
self.downsample_ratio))
# TODO: albumentations support
if self.augment:
# Albumentations
# there are some augmentation that won't change boxes and masks,
# so just be it for now.
img, labels = self.albumentations(img, labels)
nl = len(labels) # update after albumentations
# HSV color-space
augment_hsv(img, hgain=hyp["hsv_h"], sgain=hyp["hsv_s"], vgain=hyp["hsv_v"])
# Flip up-down
if random.random() < hyp["flipud"]:
img = np.flipud(img)
if nl:
labels[:, 2] = 1 - labels[:, 2]
masks = torch.flip(masks, dims=[1])
# Flip left-right
if random.random() < hyp["fliplr"]:
img = np.fliplr(img)
if nl:
labels[:, 1] = 1 - labels[:, 1]
masks = torch.flip(masks, dims=[2])
# Cutouts # labels = cutout(img, labels, p=0.5)
labels_out = torch.zeros((nl, 6))
if nl:
labels_out[:, 1:] = torch.from_numpy(labels)
# Convert
img = img.transpose((2, 0, 1))[::-1] # HWC to CHW, BGR to RGB
img = np.ascontiguousarray(img)
return (torch.from_numpy(img), labels_out, self.im_files[index], shapes, masks)
def load_mosaic(self, index):
# YOLOv5 4-mosaic loader. Loads 1 image + 3 random images into a 4-image mosaic
labels4, segments4 = [], []
s = self.img_size
yc, xc = (int(random.uniform(-x, 2 * s + x)) for x in self.mosaic_border) # mosaic center x, y
# 3 additional image indices
indices = [index] + random.choices(self.indices, k=3) # 3 additional image indices
for i, index in enumerate(indices):
# Load image
img, _, (h, w) = self.load_image(index)
# place img in img4
if i == 0: # top left
img4 = np.full((s * 2, s * 2, img.shape[2]), 114, dtype=np.uint8) # base image with 4 tiles
x1a, y1a, x2a, y2a = max(xc - w, 0), max(yc - h, 0), xc, yc # xmin, ymin, xmax, ymax (large image)
x1b, y1b, x2b, y2b = w - (x2a - x1a), h - (y2a - y1a), w, h # xmin, ymin, xmax, ymax (small image)
elif i == 1: # top right
x1a, y1a, x2a, y2a = xc, max(yc - h, 0), min(xc + w, s * 2), yc
x1b, y1b, x2b, y2b = 0, h - (y2a - y1a), min(w, x2a - x1a), h
elif i == 2: # bottom left
x1a, y1a, x2a, y2a = max(xc - w, 0), yc, xc, min(s * 2, yc + h)
x1b, y1b, x2b, y2b = w - (x2a - x1a), 0, w, min(y2a - y1a, h)
elif i == 3: # bottom right
x1a, y1a, x2a, y2a = xc, yc, min(xc + w, s * 2), min(s * 2, yc + h)
x1b, y1b, x2b, y2b = 0, 0, min(w, x2a - x1a), min(y2a - y1a, h)
img4[y1a:y2a, x1a:x2a] = img[y1b:y2b, x1b:x2b] # img4[ymin:ymax, xmin:xmax]
padw = x1a - x1b
padh = y1a - y1b
labels, segments = self.labels[index].copy(), self.segments[index].copy()
if labels.size:
labels[:, 1:] = xywhn2xyxy(labels[:, 1:], w, h, padw, padh) # normalized xywh to pixel xyxy format
segments = [xyn2xy(x, w, h, padw, padh) for x in segments]
labels4.append(labels)
segments4.extend(segments)
# Concat/clip labels
labels4 = np.concatenate(labels4, 0)
for x in (labels4[:, 1:], *segments4):
np.clip(x, 0, 2 * s, out=x) # clip when using random_perspective()
# img4, labels4 = replicate(img4, labels4) # replicate
# Augment
img4, labels4, segments4 = copy_paste(img4, labels4, segments4, p=self.hyp["copy_paste"])
img4, labels4, segments4 = random_perspective(img4,
labels4,
segments4,
degrees=self.hyp["degrees"],
translate=self.hyp["translate"],
scale=self.hyp["scale"],
shear=self.hyp["shear"],
perspective=self.hyp["perspective"],
border=self.mosaic_border) # border to remove
return img4, labels4, segments4
@staticmethod
def collate_fn(batch):
img, label, path, shapes, masks = zip(*batch) # transposed
batched_masks = torch.cat(masks, 0)
for i, l in enumerate(label):
l[:, 0] = i # add target image index for build_targets()
return torch.stack(img, 0), torch.cat(label, 0), path, shapes, batched_masks
def polygon2mask(img_size, polygons, color=1, downsample_ratio=1):
"""
Args:
img_size (tuple): The image size.
polygons (np.ndarray): [N, M], N is the number of polygons,
M is the number of points(Be divided by 2).
"""
mask = np.zeros(img_size, dtype=np.uint8)
polygons = np.asarray(polygons)
polygons = polygons.astype(np.int32)
shape = polygons.shape
polygons = polygons.reshape(shape[0], -1, 2)
cv2.fillPoly(mask, polygons, color=color)
nh, nw = (img_size[0] // downsample_ratio, img_size[1] // downsample_ratio)
# NOTE: fillPoly firstly then resize is trying the keep the same way
# of loss calculation when mask-ratio=1.
mask = cv2.resize(mask, (nw, nh))
return mask
def polygons2masks(img_size, polygons, color, downsample_ratio=1):
"""
Args:
img_size (tuple): The image size.
polygons (list[np.ndarray]): each polygon is [N, M],
N is the number of polygons,
M is the number of points(Be divided by 2).
"""
masks = []
for si in range(len(polygons)):
mask = polygon2mask(img_size, [polygons[si].reshape(-1)], color, downsample_ratio)
masks.append(mask)
return np.array(masks)
def polygons2masks_overlap(img_size, segments, downsample_ratio=1):
"""Return a (640, 640) overlap mask."""
masks = np.zeros((img_size[0] // downsample_ratio, img_size[1] // downsample_ratio),
dtype=np.int32 if len(segments) > 255 else np.uint8)
areas = []
ms = []
for si in range(len(segments)):
mask = polygon2mask(
img_size,
[segments[si].reshape(-1)],
downsample_ratio=downsample_ratio,
color=1,
)
ms.append(mask)
areas.append(mask.sum())
areas = np.asarray(areas)
index = np.argsort(-areas)
ms = np.array(ms)[index]
for i in range(len(segments)):
mask = ms[i] * (i + 1)
masks = masks + mask
masks = np.clip(masks, a_min=0, a_max=i + 1)
return masks, index