Spaces:
Sleeping
Sleeping
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from utils.metrics import bbox_iou | |
from utils.torch_utils import de_parallel | |
def smooth_BCE(eps=0.1): # https://github.com/ultralytics/yolov3/issues/238#issuecomment-598028441 | |
# return positive, negative label smoothing BCE targets | |
return 1.0 - 0.5 * eps, 0.5 * eps | |
class BCEBlurWithLogitsLoss(nn.Module): | |
# BCEwithLogitLoss() with reduced missing label effects. | |
def __init__(self, alpha=0.05): | |
super().__init__() | |
self.loss_fcn = nn.BCEWithLogitsLoss(reduction='none') # must be nn.BCEWithLogitsLoss() | |
self.alpha = alpha | |
def forward(self, pred, true): | |
loss = self.loss_fcn(pred, true) | |
pred = torch.sigmoid(pred) # prob from logits | |
dx = pred - true # reduce only missing label effects | |
# dx = (pred - true).abs() # reduce missing label and false label effects | |
alpha_factor = 1 - torch.exp((dx - 1) / (self.alpha + 1e-4)) | |
loss *= alpha_factor | |
return loss.mean() | |
class FocalLoss(nn.Module): | |
# Wraps focal loss around existing loss_fcn(), i.e. criteria = FocalLoss(nn.BCEWithLogitsLoss(), gamma=1.5) | |
def __init__(self, loss_fcn, gamma=1.5, alpha=0.25): | |
super().__init__() | |
self.loss_fcn = loss_fcn # must be nn.BCEWithLogitsLoss() | |
self.gamma = gamma | |
self.alpha = alpha | |
self.reduction = loss_fcn.reduction | |
self.loss_fcn.reduction = 'none' # required to apply FL to each element | |
def forward(self, pred, true): | |
loss = self.loss_fcn(pred, true) | |
# p_t = torch.exp(-loss) | |
# loss *= self.alpha * (1.000001 - p_t) ** self.gamma # non-zero power for gradient stability | |
# TF implementation https://github.com/tensorflow/addons/blob/v0.7.1/tensorflow_addons/losses/focal_loss.py | |
pred_prob = torch.sigmoid(pred) # prob from logits | |
p_t = true * pred_prob + (1 - true) * (1 - pred_prob) | |
alpha_factor = true * self.alpha + (1 - true) * (1 - self.alpha) | |
modulating_factor = (1.0 - p_t) ** self.gamma | |
loss *= alpha_factor * modulating_factor | |
if self.reduction == 'mean': | |
return loss.mean() | |
elif self.reduction == 'sum': | |
return loss.sum() | |
else: # 'none' | |
return loss | |
class QFocalLoss(nn.Module): | |
# Wraps Quality focal loss around existing loss_fcn(), i.e. criteria = FocalLoss(nn.BCEWithLogitsLoss(), gamma=1.5) | |
def __init__(self, loss_fcn, gamma=1.5, alpha=0.25): | |
super().__init__() | |
self.loss_fcn = loss_fcn # must be nn.BCEWithLogitsLoss() | |
self.gamma = gamma | |
self.alpha = alpha | |
self.reduction = loss_fcn.reduction | |
self.loss_fcn.reduction = 'none' # required to apply FL to each element | |
def forward(self, pred, true): | |
loss = self.loss_fcn(pred, true) | |
pred_prob = torch.sigmoid(pred) # prob from logits | |
alpha_factor = true * self.alpha + (1 - true) * (1 - self.alpha) | |
modulating_factor = torch.abs(true - pred_prob) ** self.gamma | |
loss *= alpha_factor * modulating_factor | |
if self.reduction == 'mean': | |
return loss.mean() | |
elif self.reduction == 'sum': | |
return loss.sum() | |
else: # 'none' | |
return loss | |
class ComputeLoss: | |
sort_obj_iou = False | |
# Compute losses | |
def __init__(self, model, autobalance=False): | |
device = next(model.parameters()).device # get model device | |
h = model.hyp # hyperparameters | |
# Define criteria | |
BCEcls = nn.BCEWithLogitsLoss(pos_weight=torch.tensor([h['cls_pw']], device=device)) | |
BCEobj = nn.BCEWithLogitsLoss(pos_weight=torch.tensor([h['obj_pw']], device=device)) | |
# Class label smoothing https://arxiv.org/pdf/1902.04103.pdf eqn 3 | |
self.cp, self.cn = smooth_BCE(eps=h.get('label_smoothing', 0.0)) # positive, negative BCE targets | |
# Focal loss | |
g = h['fl_gamma'] # focal loss gamma | |
if g > 0: | |
BCEcls, BCEobj = FocalLoss(BCEcls, g), FocalLoss(BCEobj, g) | |
m = de_parallel(model).model[-1] # Detect() module | |
self.balance = {3: [4.0, 1.0, 0.4]}.get(m.nl, [4.0, 1.0, 0.25, 0.06, 0.02]) # P3-P7 | |
self.ssi = list(m.stride).index(16) if autobalance else 0 # stride 16 index | |
self.BCEcls, self.BCEobj, self.gr, self.hyp, self.autobalance = BCEcls, BCEobj, 1.0, h, autobalance | |
self.nc = m.nc # number of classes | |
self.nl = m.nl # number of layers | |
self.anchors = m.anchors | |
self.device = device | |
def __call__(self, p, targets): # predictions, targets | |
bs = p[0].shape[0] # batch size | |
loss = torch.zeros(3, device=self.device) # [box, obj, cls] losses | |
tcls, tbox, indices = self.build_targets(p, targets) # targets | |
# Losses | |
for i, pi in enumerate(p): # layer index, layer predictions | |
b, gj, gi = indices[i] # image, anchor, gridy, gridx | |
tobj = torch.zeros((pi.shape[0], pi.shape[2], pi.shape[3]), dtype=pi.dtype, device=self.device) # tgt obj | |
n_labels = b.shape[0] # number of labels | |
if n_labels: | |
# pxy, pwh, _, pcls = pi[b, a, gj, gi].tensor_split((2, 4, 5), dim=1) # faster, requires torch 1.8.0 | |
pxy, pwh, _, pcls = pi[b, :, gj, gi].split((2, 2, 1, self.nc), 1) # target-subset of predictions | |
# Regression | |
# pwh = (pwh.sigmoid() * 2) ** 2 * anchors[i] | |
# pwh = (0.0 + (pwh - 1.09861).sigmoid() * 4) * anchors[i] | |
# pwh = (0.33333 + (pwh - 1.09861).sigmoid() * 2.66667) * anchors[i] | |
# pwh = (0.25 + (pwh - 1.38629).sigmoid() * 3.75) * anchors[i] | |
# pwh = (0.20 + (pwh - 1.60944).sigmoid() * 4.8) * anchors[i] | |
# pwh = (0.16667 + (pwh - 1.79175).sigmoid() * 5.83333) * anchors[i] | |
pxy = pxy.sigmoid() * 1.6 - 0.3 | |
pwh = (0.2 + pwh.sigmoid() * 4.8) * self.anchors[i] | |
pbox = torch.cat((pxy, pwh), 1) # predicted box | |
iou = bbox_iou(pbox, tbox[i], CIoU=True).squeeze() # iou(prediction, target) | |
loss[0] += (1.0 - iou).mean() # box loss | |
# Objectness | |
iou = iou.detach().clamp(0).type(tobj.dtype) | |
if self.sort_obj_iou: | |
j = iou.argsort() | |
b, gj, gi, iou = b[j], gj[j], gi[j], iou[j] | |
if self.gr < 1: | |
iou = (1.0 - self.gr) + self.gr * iou | |
tobj[b, gj, gi] = iou # iou ratio | |
# Classification | |
if self.nc > 1: # cls loss (only if multiple classes) | |
t = torch.full_like(pcls, self.cn, device=self.device) # targets | |
t[range(n_labels), tcls[i]] = self.cp | |
loss[2] += self.BCEcls(pcls, t) # cls loss | |
obji = self.BCEobj(pi[:, 4], tobj) | |
loss[1] += obji * self.balance[i] # obj loss | |
if self.autobalance: | |
self.balance[i] = self.balance[i] * 0.9999 + 0.0001 / obji.detach().item() | |
if self.autobalance: | |
self.balance = [x / self.balance[self.ssi] for x in self.balance] | |
loss[0] *= self.hyp['box'] | |
loss[1] *= self.hyp['obj'] | |
loss[2] *= self.hyp['cls'] | |
return loss.sum() * bs, loss.detach() # [box, obj, cls] losses | |
def build_targets(self, p, targets): | |
# Build targets for compute_loss(), input targets(image,class,x,y,w,h) | |
nt = targets.shape[0] # number of anchors, targets | |
tcls, tbox, indices = [], [], [] | |
gain = torch.ones(6, device=self.device) # normalized to gridspace gain | |
g = 0.3 # bias | |
off = torch.tensor( | |
[ | |
[0, 0], | |
[1, 0], | |
[0, 1], | |
[-1, 0], | |
[0, -1], # j,k,l,m | |
# [1, 1], [1, -1], [-1, 1], [-1, -1], # jk,jm,lk,lm | |
], | |
device=self.device).float() * g # offsets | |
for i in range(self.nl): | |
shape = p[i].shape | |
gain[2:6] = torch.tensor(shape)[[3, 2, 3, 2]] # xyxy gain | |
# Match targets to anchors | |
t = targets * gain # shape(3,n,7) | |
if nt: | |
# Matches | |
r = t[..., 4:6] / self.anchors[i] # wh ratio | |
j = torch.max(r, 1 / r).max(1)[0] < self.hyp['anchor_t'] # compare | |
# j = wh_iou(anchors, t[:, 4:6]) > model.hyp['iou_t'] # iou(3,n)=wh_iou(anchors(3,2), gwh(n,2)) | |
t = t[j] # filter | |
# Offsets | |
gxy = t[:, 2:4] # grid xy | |
gxi = gain[[2, 3]] - gxy # inverse | |
j, k = ((gxy % 1 < g) & (gxy > 1)).T | |
l, m = ((gxi % 1 < g) & (gxi > 1)).T | |
j = torch.stack((torch.ones_like(j), j, k, l, m)) | |
t = t.repeat((5, 1, 1))[j] | |
offsets = (torch.zeros_like(gxy)[None] + off[:, None])[j] | |
else: | |
t = targets[0] | |
offsets = 0 | |
# Define | |
bc, gxy, gwh = t.chunk(3, 1) # (image, class), grid xy, grid wh | |
b, c = bc.long().T # image, class | |
gij = (gxy - offsets).long() | |
gi, gj = gij.T # grid indices | |
# Append | |
indices.append((b, gj.clamp_(0, shape[2] - 1), gi.clamp_(0, shape[3] - 1))) # image, grid_y, grid_x indices | |
tbox.append(torch.cat((gxy - gij, gwh), 1)) # box | |
tcls.append(c) # class | |
return tcls, tbox, indices | |
class ComputeLoss_NEW: | |
sort_obj_iou = False | |
# Compute losses | |
def __init__(self, model, autobalance=False): | |
device = next(model.parameters()).device # get model device | |
h = model.hyp # hyperparameters | |
# Define criteria | |
BCEcls = nn.BCEWithLogitsLoss(pos_weight=torch.tensor([h['cls_pw']], device=device)) | |
BCEobj = nn.BCEWithLogitsLoss(pos_weight=torch.tensor([h['obj_pw']], device=device)) | |
# Class label smoothing https://arxiv.org/pdf/1902.04103.pdf eqn 3 | |
self.cp, self.cn = smooth_BCE(eps=h.get('label_smoothing', 0.0)) # positive, negative BCE targets | |
# Focal loss | |
g = h['fl_gamma'] # focal loss gamma | |
if g > 0: | |
BCEcls, BCEobj = FocalLoss(BCEcls, g), FocalLoss(BCEobj, g) | |
m = de_parallel(model).model[-1] # Detect() module | |
self.balance = {3: [4.0, 1.0, 0.4]}.get(m.nl, [4.0, 1.0, 0.25, 0.06, 0.02]) # P3-P7 | |
self.ssi = list(m.stride).index(16) if autobalance else 0 # stride 16 index | |
self.BCEcls, self.BCEobj, self.gr, self.hyp, self.autobalance = BCEcls, BCEobj, 1.0, h, autobalance | |
self.nc = m.nc # number of classes | |
self.nl = m.nl # number of layers | |
self.anchors = m.anchors | |
self.device = device | |
self.BCE_base = nn.BCEWithLogitsLoss(reduction='none') | |
def __call__(self, p, targets): # predictions, targets | |
tcls, tbox, indices = self.build_targets(p, targets) # targets | |
bs = p[0].shape[0] # batch size | |
n_labels = targets.shape[0] # number of labels | |
loss = torch.zeros(3, device=self.device) # [box, obj, cls] losses | |
# Compute all losses | |
all_loss = [] | |
for i, pi in enumerate(p): # layer index, layer predictions | |
b, gj, gi = indices[i] # image, anchor, gridy, gridx | |
if n_labels: | |
pxy, pwh, pobj, pcls = pi[b, :, gj, gi].split((2, 2, 1, self.nc), 2) # target-subset of predictions | |
# Regression | |
pbox = torch.cat((pxy.sigmoid() * 1.6 - 0.3, (0.2 + pwh.sigmoid() * 4.8) * self.anchors[i]), 2) | |
iou = bbox_iou(pbox, tbox[i], CIoU=True).squeeze() # iou(predicted_box, target_box) | |
obj_target = iou.detach().clamp(0).type(pi.dtype) # objectness targets | |
all_loss.append([(1.0 - iou) * self.hyp['box'], | |
self.BCE_base(pobj.squeeze(), torch.ones_like(obj_target)) * self.hyp['obj'], | |
self.BCE_base(pcls, F.one_hot(tcls[i], self.nc).float()).mean(2) * self.hyp['cls'], | |
obj_target, | |
tbox[i][..., 2] > 0.0]) # valid | |
# Lowest 3 losses per label | |
n_assign = 4 # top n matches | |
cat_loss = [torch.cat(x, 1) for x in zip(*all_loss)] | |
ij = torch.zeros_like(cat_loss[0]).bool() # top 3 mask | |
sum_loss = cat_loss[0] + cat_loss[2] | |
for col in torch.argsort(sum_loss, dim=1).T[:n_assign]: | |
# ij[range(n_labels), col] = True | |
ij[range(n_labels), col] = cat_loss[4][range(n_labels), col] | |
loss[0] = cat_loss[0][ij].mean() * self.nl # box loss | |
loss[2] = cat_loss[2][ij].mean() * self.nl # cls loss | |
# Obj loss | |
for i, (h, pi) in enumerate(zip(ij.chunk(self.nl, 1), p)): # layer index, layer predictions | |
b, gj, gi = indices[i] # image, anchor, gridy, gridx | |
tobj = torch.zeros((pi.shape[0], pi.shape[2], pi.shape[3]), dtype=pi.dtype, device=self.device) # obj | |
if n_labels: # if any labels | |
tobj[b[h], gj[h], gi[h]] = all_loss[i][3][h] | |
loss[1] += self.BCEobj(pi[:, 4], tobj) * (self.balance[i] * self.hyp['obj']) | |
return loss.sum() * bs, loss.detach() # [box, obj, cls] losses | |
def build_targets(self, p, targets): | |
# Build targets for compute_loss(), input targets(image,class,x,y,w,h) | |
nt = targets.shape[0] # number of anchors, targets | |
tcls, tbox, indices = [], [], [] | |
gain = torch.ones(6, device=self.device) # normalized to gridspace gain | |
g = 0.3 # bias | |
off = torch.tensor( | |
[ | |
[0, 0], | |
[1, 0], | |
[0, 1], | |
[-1, 0], | |
[0, -1], # j,k,l,m | |
# [1, 1], [1, -1], [-1, 1], [-1, -1], # jk,jm,lk,lm | |
], | |
device=self.device).float() # offsets | |
for i in range(self.nl): | |
shape = p[i].shape | |
gain[2:6] = torch.tensor(shape)[[3, 2, 3, 2]] # xyxy gain | |
# Match targets to anchors | |
t = targets * gain # shape(3,n,7) | |
if nt: | |
# # Matches | |
r = t[..., 4:6] / self.anchors[i] # wh ratio | |
a = torch.max(r, 1 / r).max(1)[0] < self.hyp['anchor_t'] # compare | |
# a = wh_iou(anchors, t[:, 4:6]) > model.hyp['iou_t'] # iou(3,n)=wh_iou(anchors(3,2), gwh(n,2)) | |
# t = t[a] # filter | |
# # Offsets | |
gxy = t[:, 2:4] # grid xy | |
gxi = gain[[2, 3]] - gxy # inverse | |
j, k = ((gxy % 1 < g) & (gxy > 1)).T | |
l, m = ((gxi % 1 < g) & (gxi > 1)).T | |
j = torch.stack((torch.ones_like(j), j, k, l, m)) & a | |
t = t.repeat((5, 1, 1)) | |
offsets = torch.zeros_like(gxy)[None] + off[:, None] | |
t[..., 4:6][~j] = 0.0 # move unsuitable targets far away | |
else: | |
t = targets[0] | |
offsets = 0 | |
# Define | |
bc, gxy, gwh = t.chunk(3, 2) # (image, class), grid xy, grid wh | |
b, c = bc.long().transpose(0, 2).contiguous() # image, class | |
gij = (gxy - offsets).long() | |
gi, gj = gij.transpose(0, 2).contiguous() # grid indices | |
# Append | |
indices.append((b, gj.clamp_(0, shape[2] - 1), gi.clamp_(0, shape[3] - 1))) # image, grid_y, grid_x indices | |
tbox.append(torch.cat((gxy - gij, gwh), 2).permute(1, 0, 2).contiguous()) # box | |
tcls.append(c) # class | |
# # Unique | |
# n1 = torch.cat((b.view(-1, 1), tbox[i].view(-1, 4)), 1).shape[0] | |
# n2 = tbox[i].view(-1, 4).unique(dim=0).shape[0] | |
# print(f'targets-unique {n1}-{n2} diff={n1-n2}') | |
return tcls, tbox, indices | |