oasst1-Phi2 / app.py
VarunSivamani's picture
modified examples
4592105 verified
import gradio as gr
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
import os
token = os.environ.get("HUGGING_FACE_TOKEN")
model_name = "microsoft/phi-2"
model = AutoModelForCausalLM.from_pretrained(
model_name,
use_auth_token=token,
trust_remote_code=True
)
model.config.use_cache = False
model.load_adapter("checkpoint_500")
tokenizer = AutoTokenizer.from_pretrained("checkpoint_500", trust_remote_code=True)
tokenizer.pad_token = tokenizer.eos_token
def inference(prompt, count):
count = int(count)
pipe = pipeline(task="text-generation", model=model, tokenizer=tokenizer)
result = pipe(f"{prompt}",max_new_tokens=count)
output = result[0]['generated_text']
return output
examples = [
["What is deep learning?","50"]
]
demo = gr.Interface(
inference,
inputs = [
gr.Textbox(placeholder="Enter a prompt"),
gr.Textbox(placeholder="Enter number of characters you want to generate")
],
outputs = [
gr.Textbox(label="Generated text")
],
examples = examples
)
demo.launch()