ValueFX9507 commited on
Commit
92a5319
·
verified ·
1 Parent(s): 6e914dc

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +137 -50
app.py CHANGED
@@ -1,64 +1,151 @@
1
  import gradio as gr
2
- from huggingface_hub import InferenceClient
3
-
4
- """
5
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
- """
7
- client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
8
 
 
 
 
9
 
10
- def respond(
11
- message,
12
- history: list[tuple[str, str]],
13
- system_message,
14
- max_tokens,
15
- temperature,
16
- top_p,
17
- ):
18
- messages = [{"role": "system", "content": system_message}]
19
-
20
- for val in history:
21
- if val[0]:
22
- messages.append({"role": "user", "content": val[0]})
23
- if val[1]:
24
- messages.append({"role": "assistant", "content": val[1]})
 
 
 
 
 
 
 
 
 
 
 
 
 
 
25
 
 
 
 
 
 
 
 
 
 
26
  messages.append({"role": "user", "content": message})
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
27
 
28
- response = ""
 
 
 
 
 
 
29
 
30
- for message in client.chat_completion(
31
- messages,
32
- max_tokens=max_tokens,
33
- stream=True,
34
- temperature=temperature,
35
- top_p=top_p,
36
- ):
37
- token = message.choices[0].delta.content
38
 
39
- response += token
40
- yield response
 
 
 
41
 
 
 
 
 
 
 
42
 
 
 
 
 
 
 
43
  """
44
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
45
- """
46
- demo = gr.ChatInterface(
47
- respond,
48
- additional_inputs=[
49
- gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
50
- gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
51
- gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
52
- gr.Slider(
53
- minimum=0.1,
54
- maximum=1.0,
55
- value=0.95,
56
- step=0.05,
57
- label="Top-p (nucleus sampling)",
58
- ),
59
- ],
60
- )
61
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
62
 
 
63
  if __name__ == "__main__":
64
- demo.launch()
 
 
1
  import gradio as gr
2
+ import openai
3
+ import re
4
+ import json
5
+ from typing import Iterator
 
 
6
 
7
+ # API配置
8
+ openai.api_key = "sk-5c2b6a56-2e2f-45f7-9a26-3fe42a218eb9"
9
+ openai.api_base = "https://api.visionsic.com/v1/"
10
 
11
+ def format_think_tags(content: str) -> str:
12
+ """处理<think>标签的函数"""
13
+ if not content:
14
+ return ""
15
+
16
+ formatted_content = ""
17
+ current_pos = 0
18
+
19
+ # 查找所有<think>标签
20
+ think_pattern = r"<think>(.*?)</think>"
21
+ matches = re.finditer(think_pattern, content, re.DOTALL)
22
+
23
+ for match in matches:
24
+ # 添加<think>之前的内容
25
+ formatted_content += content[current_pos:match.start()]
26
+
27
+ think_content = match.group(1)
28
+ # 创建可折叠的思考内容区块
29
+ formatted_content += f"""
30
+ <details class="think-container" open>
31
+ <summary class="think-summary">思考过程(点击展开)</summary>
32
+ <div class="think-content">{think_content}</div>
33
+ </details>
34
+ """
35
+ current_pos = match.end()
36
+
37
+ # 添加剩余内容
38
+ formatted_content += content[current_pos:]
39
+ return formatted_content
40
 
41
+ def chat_stream(message: str, history: list, system_prompt: str) -> Iterator[str]:
42
+ """处理聊天流式响应"""
43
+ messages = [{"role": "system", "content": system_prompt}]
44
+
45
+ # 添加历史对话
46
+ for human, assistant in history:
47
+ messages.append({"role": "user", "content": human})
48
+ messages.append({"role": "assistant", "content": assistant})
49
+
50
  messages.append({"role": "user", "content": message})
51
+
52
+ # 调用API进行流式对话
53
+ response = openai.ChatCompletion.create(
54
+ model="mini",
55
+ messages=messages,
56
+ stream=True
57
+ )
58
+
59
+ collected_messages = []
60
+ for chunk in response:
61
+ if chunk and hasattr(chunk.choices[0].delta, "content"):
62
+ chunk_message = chunk.choices[0].delta.content
63
+ collected_messages.append(chunk_message)
64
+ partial_message = "".join(collected_messages)
65
+ formatted_message = format_think_tags(partial_message)
66
+ yield formatted_message
67
 
68
+ # 自定义CSS样式
69
+ custom_css = """
70
+ .container {
71
+ max-width: 800px;
72
+ margin: 0 auto;
73
+ padding: 20px;
74
+ }
75
 
76
+ .think-container {
77
+ background: #f5f5f5;
78
+ border: 1px solid #ddd;
79
+ border-radius: 5px;
80
+ margin: 10px 0;
81
+ padding: 10px;
82
+ }
 
83
 
84
+ .think-summary {
85
+ cursor: pointer;
86
+ font-weight: bold;
87
+ color: #2196F3;
88
+ }
89
 
90
+ .think-content {
91
+ margin-top: 10px;
92
+ padding: 10px;
93
+ background: #fff;
94
+ border-radius: 3px;
95
+ }
96
 
97
+ .code-block {
98
+ background: #f8f8f8;
99
+ padding: 10px;
100
+ border-radius: 5px;
101
+ font-family: monospace;
102
+ }
103
  """
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
104
 
105
+ # 创建Gradio界面
106
+ with gr.Blocks(css=custom_css) as demo:
107
+ gr.Markdown("# Tifa-Deepsex-COT-14B")
108
+ gr.Markdown("### 请设置你喜欢的角色聊天吧")
109
+
110
+ with gr.Row():
111
+ with gr.Column(scale=4):
112
+ chatbot = gr.Chatbot(
113
+ height=600,
114
+ show_copy_button=True,
115
+ layout="bubble",
116
+ )
117
+ with gr.Column(scale=1):
118
+ system_prompt = gr.Textbox(
119
+ value="你是tifa",
120
+ label="System Prompt",
121
+ lines=3
122
+ )
123
+
124
+ with gr.Row():
125
+ message = gr.Textbox(
126
+ label="发送消息",
127
+ placeholder="在这里输入你的消息...",
128
+ lines=2
129
+ )
130
+ submit = gr.Button("发送", variant="primary")
131
+ clear = gr.Button("清除对话")
132
+
133
+ # 事件处理
134
+ submit.click(
135
+ chat_stream,
136
+ inputs=[message, chatbot, system_prompt],
137
+ outputs=chatbot,
138
+ show_progress=True
139
+ )
140
+ message.submit(
141
+ chat_stream,
142
+ inputs=[message, chatbot, system_prompt],
143
+ outputs=chatbot,
144
+ show_progress=True
145
+ )
146
+ clear.click(lambda: None, None, chatbot, queue=False)
147
 
148
+ # 启动应用
149
  if __name__ == "__main__":
150
+ demo.queue()
151
+ demo.launch(share=False, server_name="0.0.0.0", server_port=7860)