Mental_health / back.py
VallampatlaBhuvan23's picture
Update back.py
1033c6d verified
from fastapi import FastAPI, File, UploadFile, Form
from fastapi.middleware.cors import CORSMiddleware
from transformers import LongformerTokenizer, pipeline
from PIL import Image
import pytesseract
import cv2
import re
import torch
import matplotlib.pyplot as plt
import math
import io
import base64
from typing import Dict, List, Any, Optional
import numpy as np
app = FastAPI()
app.add_middleware(
CORSMiddleware,
allow_origins=["*"],
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
device = 0 if torch.cuda.is_available() else -1
model_id = "allenai/longformer-base-4096"
tok = LongformerTokenizer.from_pretrained(model_id)
emo_head = pipeline(
"text-classification",
model="j-hartmann/emotion-english-distilroberta-base",
return_all_scores=True,
device=device,
)
translator = pipeline(
"translation",
model="Helsinki-NLP/opus-mt-mul-en",
device=device,
)
flan = pipeline("text2text-generation", model="google/flan-t5-base", device=device)
time_regex = re.compile(r"(\d{1,2}[:]\d{2}\s*(AM|PM|am|pm)?)|(\d{1,2}[/]\d{1,2}[/]\d{2,4})")
negative_keys = {"anger", "sadness", "fear", "disgust"}
positive_keys = {"joy", "surprise"}
def mask_names(names: List[str]) -> Dict[str, str]:
return {n: f"User_{i+1}" for i, n in enumerate(names)}
def extract_time(line: str) -> str:
m = time_regex.search(line)
return m.group() if m else ""
def ocr_image(image: Image.Image) -> str:
img = image.convert("RGB")
try:
return pytesseract.image_to_string(img, lang="eng+hin+tel")
except Exception:
return pytesseract.image_to_string(img)
def ocr_video_bytes(video_bytes: bytes) -> str:
temp_path = "/tmp/temp_video.mp4"
with open(temp_path, "wb") as f:
f.write(video_bytes)
cap = cv2.VideoCapture(temp_path)
texts = []
idx = 0
while True:
ret, frame = cap.read()
if not ret:
break
if idx % 25 == 0:
rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
img = Image.fromarray(rgb)
try:
t = pytesseract.image_to_string(img, lang="eng+hin+tel")
except Exception:
t = pytesseract.image_to_string(img)
if t.strip():
texts.append(t)
idx += 1
cap.release()
return "\n".join(texts)
def split_by_speaker(text: str, privacy: bool) -> Dict[str, str]:
speakers: Dict[str, List[str]] = {}
for raw in text.splitlines():
if ":" in raw:
name, msg = raw.split(":", 1)
name, msg = name.strip(), msg.strip()
if msg:
speakers.setdefault(name, []).append(msg)
if not speakers:
speakers["User"] = [text]
if privacy:
mapping = mask_names(list(speakers.keys()))
return {mapping[k]: " ".join(v) for k, v in speakers.items()}
return {k: " ".join(v) for k, v in speakers.items()}
def chunk_text(text: str, max_tokens: int = 2048) -> List[str]:
words = text.split()
chunks: List[str] = []
temp: List[str] = []
for w in words:
temp.append(w)
enc = tok(" ".join(temp), truncation=True, max_length=max_tokens)
if len(enc["input_ids"]) >= max_tokens:
temp.pop()
chunks.append(" ".join(temp))
temp = [w]
if temp:
chunks.append(" ".join(temp))
return chunks
def translate_to_english(text: str) -> str:
if not text or not text.strip():
return text
ascii_chars = sum(1 for ch in text if ord(ch) < 128)
ascii_ratio = ascii_chars / max(1, len(text))
if ascii_ratio > 0.9:
return text
try:
out = translator(text, max_length=512)
if isinstance(out, list) and out:
return out[0]["translation_text"]
except Exception:
return text
return text
def emotion_scores(text: str) -> Dict[str, float]:
res = emo_head(text)[0]
return {x["label"]: float(x["score"]) for x in res}
def emotions_over_chunks(chunks: List[str]) -> Dict[str, float]:
if not chunks:
return {}
sums: Dict[str, float] = {}
count = 0
for c in chunks:
translated = translate_to_english(c)
e = emotion_scores(translated)
for k, v in e.items():
sums[k] = sums.get(k, 0.0) + v
count += 1
return {k: v / count for k, v in sums.items()} if count else {}
def compute_risk(emotions: Dict[str, float]) -> float:
neg = sum(emotions.get(k, 0.0) for k in negative_keys)
strongest_neg = max((emotions.get(k, 0.0) for k in negative_keys), default=0.0)
risk = 0.7 * neg + 0.3 * strongest_neg
return max(0.0, min(1.0, risk))
def dominant_emotions(emotions: Dict[str, float], top_n: int = 2, threshold: float = 0.2):
if not emotions:
return []
sorted_items = sorted(emotions.items(), key=lambda x: x[1], reverse=True)
dom = [k for k, v in sorted_items if v >= threshold]
if not dom:
dom = [sorted_items[0][0]]
return dom[:top_n]
def summarize_person(name: str, text: str, risk: float, emotions: Dict[str, float]) -> str:
emo_str_for_prompt = ", ".join(f"{k}: {round(v,3)}" for k, v in emotions.items())
prompt = (
"You are a clinical psychologist describing one person from a chat. "
"Write a short summary in THIRD PERSON about this person only. "
"Explain briefly: what they mainly talked about, what they seem to feel, "
"and how they are coping with work or life. "
"IMPORTANT: Do NOT copy or quote any sentences from the chat. "
"Do NOT use lines like 'Name:' or repeat the exact wording. "
"Write 4 to 6 ORIGINAL sentences in your own words.\n"
f"Person name: {name}\n"
f"Risk score (0-1): {round(risk,3)}\n"
f"Emotion scores: {emo_str_for_prompt}\n"
f"Conversation from this person:\n{text[:2500]}"
)
out = flan(prompt, max_length=220, do_sample=False)[0]["generated_text"].strip()
return out
def hybrid_suggestions(name: str, summary: str, risk: float, emotions: Dict[str, float]) -> str:
emo_str_for_prompt = ", ".join(f"{k}: {round(v,3)}" for k, v in emotions.items())
neg_sum = sum(emotions.get(k, 0.0) for k in negative_keys)
pos_sum = sum(emotions.get(k, 0.0) for k in positive_keys)
prompt = (
"You are a therapist AND a practical workplace coach giving advice directly to this person. "
"Use the summary below only as background. "
"You MUST NOT repeat sentences or phrases from the summary. "
"Do NOT retell what happened in the chat. "
"Instead, give 4 to 6 sentences of specific, realistic suggestions that mix emotional support "
"and workplace strategies. Include both coping ideas (breathing, journaling, breaks, talking to someone) "
"AND practical tips (communication, planning, boundaries, routines). "
"Keep the tone gentle and hopeful.\n"
f"Person name: {name}\n"
f"Risk score (0-1): {round(risk,3)}\n"
f"Total negative emotion: {round(neg_sum,3)}\n"
f"Total positive emotion: {round(pos_sum,3)}\n"
f"Emotion scores: {emo_str_for_prompt}\n"
f"Summary of this person:\n{summary}"
)
out = flan(prompt, max_length=230, do_sample=False)[0]["generated_text"].strip()
return out
def build_two_line_overall_summary(results: List[Dict[str, Any]], group_emo: Dict[str, float]) -> str:
if not results:
return "No conversation detected."
names = [r["name"] for r in results]
if len(names) == 1:
name_part = names[0]
else:
name_part = ", ".join(names[:-1]) + " and " + names[-1]
avg_risk = sum(r["risk"] for r in results) / len(results)
if avg_risk > 0.7:
risk_text = "are experiencing intense emotional strain related to this conversation."
elif avg_risk > 0.45:
risk_text = "are dealing with noticeable stress and emotional discomfort."
else:
risk_text = "show mostly manageable emotions with some moments of stress."
if group_emo:
top_emos = sorted(group_emo.items(), key=lambda x: x[1], reverse=True)[:3]
emo_part = ", ".join(k for k, _ in top_emos)
emo_text = f"The most prominent emotions in the group are {emo_part}."
else:
emo_text = "The emotional tone of the conversation is relatively neutral."
return f"{name_part} {risk_text} {emo_text}"
def plot_to_base64(fig) -> str:
buf = io.BytesIO()
fig.savefig(buf, format="png", bbox_inches="tight")
buf.seek(0)
img_base64 = base64.b64encode(buf.read()).decode("utf-8")
plt.close(fig)
return img_base64
@app.post("/analyze")
async def analyze(
text_input: Optional[str] = Form(None),
privacy: str = Form("OFF"),
images: List[UploadFile] = File(None),
videos: List[UploadFile] = File(None),
):
collected: List[str] = []
if text_input and text_input.strip():
collected.append(text_input)
if images:
for img_file in images:
img_bytes = await img_file.read()
img = Image.open(io.BytesIO(img_bytes))
t = ocr_image(img)
if t.strip():
collected.append(t)
if videos:
for vid_file in videos:
vid_bytes = await vid_file.read()
t = ocr_video_bytes(vid_bytes)
if t.strip():
collected.append(t)
if not collected:
return {"error": "No readable text found."}
combined = "\n".join(collected)
speakers = split_by_speaker(combined, privacy == "ON")
results: List[Dict[str, Any]] = []
for name, txt in speakers.items():
chunks = chunk_text(txt)
emos = emotions_over_chunks(chunks)
risk = compute_risk(emos)
summary = summarize_person(name, txt, risk, emos)
feedback = hybrid_suggestions(name, summary, risk, emos)
results.append(
{
"name": name,
"risk": risk,
"emotions": emos,
"summary": summary,
"feedback": feedback,
}
)
fig1, ax = plt.subplots(1, 2, figsize=(11, 4))
names = [x["name"] for x in results]
scores = [x["risk"] for x in results]
ax[0].bar(names, scores, color="#B03A2E")
ax[0].set_ylim(0, 1)
ax[0].set_title("Risk Levels")
group_emo: Dict[str, float] = {}
for r in results:
for k, v in r["emotions"].items():
group_emo[k] = group_emo.get(k, 0.0) + v
group_emo = {k: v / len(results) for k, v in group_emo.items()}
ax[1].bar(list(group_emo.keys()), list(group_emo.values()), color="#2E86C1")
ax[1].set_ylim(0, 1)
ax[1].set_title("Group Emotion")
plt.tight_layout()
plot1_b64 = plot_to_base64(fig1)
n = len(results)
cols = min(3, n)
rows = math.ceil(n / cols)
fig2, ax2 = plt.subplots(rows, cols, figsize=(5 * cols, 3 * rows))
axlist = [ax2] if n == 1 else ax2.flatten()
for i, r in enumerate(results):
axp = axlist[i]
axp.bar(list(r["emotions"].keys()), list(r["emotions"].values()), color="#17A589")
axp.set_ylim(0, 1)
axp.set_title(r["name"])
axp.tick_params(axis="x", rotation=45)
for j in range(len(axlist) - n):
axlist[n + j].axis("off")
fig2.tight_layout()
plot2_b64 = plot_to_base64(fig2)
overall_summary = build_two_line_overall_summary(results, group_emo)
return {
"overall_summary": overall_summary,
"results": results,
"group_emotions": group_emo,
"plot1": plot1_b64,
"plot2": plot2_b64,
}
@app.get("/")
async def root():
return {"message": "Mental Health Chat Analyzer API"}
if __name__ == "__main__":
import uvicorn
uvicorn.run(app, host="0.0.0.0", port=8000)