Spaces:
Runtime error
Runtime error
from transformers import AutoModelForCausalLM, AutoTokenizer | |
import gradio as gr | |
import torch | |
tokenizer = AutoTokenizer.from_pretrained("meta-llama/Llama-2-7b-chat-hf") | |
model = AutoModelForCausalLM.from_pretrained("meta-llama/Llama-2-7b-chat-hf") | |
def launch(input, history = []): | |
new_user_input_ids = tokenizer.encode( | |
input + tokenizer.eos_token, return_tensors="pt" | |
) | |
bot_input_ids = torch.cat([torch.LongTensor(history), new_user_input_ids], dim=-1) | |
history = model.generate( | |
bot_input_ids, max_length=4000, pad_token_id=tokenizer.eos_token_id | |
).tolist() | |
response = tokenizer.decode(history[0]).split("<|endoftext|>") | |
response = [ | |
(response[i], response[i + 1]) for i in range(0, len(response) - 1, 2) | |
] | |
print(response) | |
return response | |
iface = gr.Interface(launch, inputs="text", outputs="text") | |
iface.launch() |