Vahe's picture
app.py changed
002b52b
import streamlit as st
import cv2
import numpy as np
from PIL import Image, ImageDraw
# import imutils
# import easyocr
# import os
# import pathlib
# import platform
# from xyxy_converter import yolov5_to_image_coordinates
# import shutil
from models import get_odometer_xy, get_digit
# system_platform = platform.system()
# if system_platform == 'Windows': pathlib.PosixPath = pathlib.WindowsPath
# CUR_DIR = os.getcwd()
# YOLO_PATH = f"{CUR_DIR}/yolov5"
# MODEL_PATH = "runs/train/exp/weights/best.pt"
def main():
st.title("Odometer value extractor with Streamlit")
# Use st.camera to capture images from the user's camera
img_file_buffer = st.camera_input(label='Please, take a photo of odometer', key="odometer")
# Check if an image is captured
if img_file_buffer is not None:
# Convert the image to a NumPy array
image = Image.open(img_file_buffer)
image_np = np.array(image)
resized_image = cv2.resize(image_np, (640, 640))
resized_image = resized_image.astype(np.uint8)
cv2.imwrite('odometer_image.jpg', resized_image)
# original_img = cv2.imread('odometer_image.jpg')
gray = cv2.cvtColor(resized_image, cv2.COLOR_BGR2GRAY)
x1, y1, x2, y2, odo_confidence = get_odometer_xy(
model_path='odo_detector.tflite',
image_path='odometer_image.jpg'
)
st.write(odo_confidence)
if odo_confidence == 0:
display_text = "An odometer is not detected in the image!!!"
st.image('odometer_image.jpg', caption=f"{display_text}", use_column_width=True)
else:
# cropped_image = gray[y1:y2, x1:x2]
cropped_image = resized_image[y1:y2, x1:x2]
cropped_image = cv2.resize(cropped_image, (640, 640))
cv2.imwrite('odometer_number_image.jpg', cropped_image)
extracted_digit = get_digit(
model_path="digit_yolov8_best_float16.tflite",
image_path='odometer_number_image.jpg',
threshold=0.4
)
display_text = f'Here is the zoomed odometer value: {extracted_digit}'
st.image('odometer_number_image.jpg', caption=f"{display_text}", use_column_width=True)
image = Image.open('odometer_image.jpg')
image_resized = image.resize((640, 640))
draw = ImageDraw.Draw(image_resized)
draw.rectangle([x1, y1, x2, y2], outline="red", width=2)
class_name = 'odometer'
text = f"Class: {class_name}, Confidence: {odo_confidence:.2f}"
draw.text((x1, y1), text, fill="red")
# Saving Images
image_resized.save('odometer_highlighted_image.jpg')
display_text = 'Here is the odometer on the image.'
st.image('odometer_highlighted_image.jpg', caption=f"{display_text}", use_column_width=True)
# detect(
# weights='yolov5\runs\train\exp\weights\best.pt',
# source='odometer_image.jpg',
# img=640,
# conf=0.4,
# name='temp_exp',
# hide_labels=True,
# hide_conf=True,
# save_txt=True,
# exist_ok=True
# )
# # os.system('wandb disabled')
# os.chdir(YOLO_PATH)
# # try:
# # shutil.rmtree('runs/detect/temp_exp')
# # except:
# # pass
# image_path = "../odometer_image.jpg"
# # command = f"python detect.py --weights {MODEL_PATH} --source {image_path} --img 640 --conf 0.4 --name 'temp_exp' --hide-labels --hide-conf --save-txt --exist-ok"
# command = f'''
# python detect.py \
# --weights {MODEL_PATH} \
# --source {image_path} \
# --img 640 \
# --conf 0.4 \
# --name temp_exp \
# --hide-labels \
# --hide-conf \
# --save-txt \
# --exist-ok \
# --save-conf
# '''
# # Run the command
# os.system(command)
# # st.write('The detection is completed!!!')
# os.chdir(CUR_DIR)
# # st.write(os.path.exists('yolov5/runs/detect/temp_exp'))
# if os.path.exists('yolov5/runs/detect/temp_exp'):
# processed_image = cv2.imread('yolov5/runs/detect/temp_exp/odometer_image.jpg')
# # st.write('Image boxed and loaded')
# text_files = os.listdir('yolov5/runs/detect/temp_exp/labels')
# original_img = cv2.imread('odometer_image.jpg')
# gray = cv2.cvtColor(original_img, cv2.COLOR_BGR2GRAY)
# if len(text_files) == 0:
# display_text = "An odometer is not detected in the image!!!"
# else:
# text_file_path = f'yolov5/runs/detect/temp_exp/labels/{text_files[0]}'
# x1, y1, x2, y2 = yolov5_to_image_coordinates(text_file_path)
# # st.write(x1, y1, x2, y2)
# cropped_image = gray[x1:x2, y1:y2]
# reader = easyocr.Reader(['en'])
# result = reader.readtext(cropped_image)
# if len(result) != 0:
# odometer_value = sorted(result, key=lambda x: x[2], reverse=True)[0][1]
# display_text = f"Odometer value: {odometer_value}"
# else:
# odometer_value = 'not detected'
# display_text = f"The odometer value is {odometer_value}!!!"
# else:
# display_text = "An odometer is not detected in the image!!!"
# processed_image = cv2.imread('odometer_image.jpg')
# try:
# shutil.rmtree('odometer_image.jpg')
# shutil.rmtree('runs/detect/temp_exp')
# except:
# pass
# # Resize or preprocess the image as needed for your model
# # For example, resizing to a specific input size
# # processed_image = cv2.resize(image_np, (224, 224))
# # Process the image using your deep learning model
# # processed_image = process_image(image_np)
# # Display the processed image
# st.image(processed_image, caption=f"{display_text}", use_column_width=True)
st.session_state.pop("odometer")
if __name__ == "__main__":
main()