Spaces:
Sleeping
Sleeping
import tensorflow as tf | |
import numpy as np | |
from PIL import Image | |
import cv2 | |
# import streamlit as st | |
def get_card_xy(model_path, image_path): | |
#model_path = 'odo_detector.tflite' | |
interpreter = tf.lite.Interpreter(model_path=model_path) | |
interpreter.allocate_tensors() | |
input_details = interpreter.get_input_details() | |
output_details = interpreter.get_output_details() | |
# Obtain the height and width of the corresponding image from the input tensor | |
image_height = input_details[0]['shape'][2] # 640 | |
image_width = input_details[0]['shape'][3] # 640 | |
# Image Preparation | |
# image_name = 'car.jpg' | |
image = Image.open(image_path) | |
image_resized = image.resize((image_width, image_height)) # Resize the image to the corresponding size of the input tensor and store it in a new variable | |
image_np = np.array(image_resized) # | |
image_np = np.true_divide(image_np, 255, dtype=np.float32) | |
image_np = np.moveaxis(image_np, -1, 0) | |
image_np = image_np[np.newaxis, :] | |
# inference | |
interpreter.set_tensor(input_details[0]['index'], image_np) | |
interpreter.invoke() | |
# Obtaining output results | |
output = interpreter.get_tensor(output_details[0]['index']) | |
output = output[0] | |
output = output.T | |
boxes_xywh = output[:, :4] #Get coordinates of bounding box, first 4 columns of output tensor | |
scores = output[:, 4]#np.max(output[..., 5:], axis=1) #Get score value, 5th column of output tensor | |
classes = np.zeros(len(scores))#np.argmax(output[..., 5:], axis=1) # Get the class value, get the 6th and subsequent columns of the output tensor, and store the largest value in the output tensor. | |
# Threshold Setting | |
# threshold = 0.7 | |
final_score = 0 | |
x_center, y_center, width, height = 0, 0, 0, 0 | |
class_name = 'card_number' | |
# Bounding boxes, scores, and classes are drawn on the image | |
# draw = ImageDraw.Draw(image_resized) | |
for box, score, cls in zip(boxes_xywh, scores, classes): | |
if score >= final_score: | |
x_center, y_center, width, height = box | |
final_score = score | |
class_name = cls | |
else: | |
pass | |
# x1 = int((x_center - width / 2) * image_width) | |
# y1 = int((y_center - height / 2) * image_height) | |
# x2 = int((x_center + width / 2) * image_width) | |
# y2 = int((y_center + height / 2) * image_height) | |
output_image_width = 640 | |
output_image_height = 640 | |
x1 = int((x_center - width / 2) * output_image_width) | |
y1 = int((y_center - height / 2) * output_image_height) | |
x2 = int((x_center + width / 2) * output_image_width) | |
y2 = int((y_center + height / 2) * output_image_height) | |
# draw.rectangle([x1, y1, x2, y2], outline="red", width=2) | |
# text = f"Class: {class_name}, Score: {final_score:.2f}" | |
# draw.text((x1, y1), text, fill="red") | |
# Saving Images | |
# image_resized.save('test_img.jpg') | |
return x1, y1, x2, y2, final_score | |
def get_digit(model_path, image_path, threshold=0.5): | |
interpreter = tf.lite.Interpreter(model_path=model_path) | |
interpreter.allocate_tensors() | |
input_details = interpreter.get_input_details() | |
output_details = interpreter.get_output_details() | |
# Obtain the height and width of the corresponding image from the input tensor | |
image_height = input_details[0]['shape'][1] # 640 | |
image_width = input_details[0]['shape'][2] # 640 | |
# Image Preparation | |
# image_name = 'car.jpg' | |
# image = Image.open(image_path2) | |
# image_resized = image.resize((image_width, image_height)) # Resize the image to the corresponding size of the input tensor and store it in a new variable | |
image = cv2.imread(image_path) | |
# image_resized = np.resize(image, (image_width, image_height, 3)) | |
image_np = np.array(image) # | |
image_np = np.true_divide(image_np, 255, dtype=np.float32) | |
image_np = image_np[np.newaxis, :] | |
# inference | |
interpreter.set_tensor(input_details[0]['index'], image_np) | |
interpreter.invoke() | |
# Obtaining output results | |
output = interpreter.get_tensor(output_details[0]['index']) | |
output = output[0] | |
output = output.T | |
boxes_xywh = output[:, :4] #Get coordinates of bounding box, first 4 columns of output tensor | |
scores = np.max(output[:, 4:], axis=1) #Get score value, 5th column of output tensor | |
classes = np.argmax(output[:, 4:], axis=1) # Get the class value, get the 6th and subsequent columns of the output tensor, and store the largest value in the output tensor. | |
pred_list = [] | |
prob_threshold = threshold | |
for box, score, cls in zip(boxes_xywh, scores, classes): | |
if score < prob_threshold: | |
continue | |
x_center, y_center, width, height = box | |
x1 = int((x_center - width / 2) * image_width) | |
y1 = int((y_center - height / 2) * image_height) | |
x2 = int((x_center + width / 2) * image_width) | |
y2 = int((y_center + height / 2) * image_height) | |
pred_list.append((x1, x2, cls, score)) | |
pred_list = sorted(pred_list, key=lambda x: x[0]) | |
num_list = [] | |
temp_pred_list =[] | |
x_prev = 0 | |
x_diff = min([elem[1] - elem[0] for elem in pred_list]) - 10 | |
for idx, pred in enumerate(pred_list): | |
if idx == 0: | |
temp_pred_list.append(pred) | |
x_prev = pred[0] | |
elif idx == len(pred_list) - 1: | |
temp_final_num = sorted(temp_pred_list, key=lambda x: x[-1], reverse=True)[0] | |
num_list.append(temp_final_num) | |
elif pred[0] - x_prev < x_diff: | |
temp_pred_list.append(pred) | |
x_prev = pred[0] | |
else: | |
temp_final_num = sorted(temp_pred_list, key=lambda x: x[-1], reverse=True)[0] | |
num_list.append(temp_final_num) | |
temp_pred_list = [] | |
x_prev = pred[0] | |
temp_pred_list.append(pred) | |
sorted_number_list = sorted(num_list, key=lambda x: x[0]) | |
# sorted_number_list = sorted(sorted_number_list, reverse=True, key= lambda x: x[-1]) | |
# output_digit = float(''.join([str(int(i[2])) if i[2]!=10 else '.' for i in sorted_number_list])) | |
output_digit = float(''.join([str(int(i[2])) if i[2]!=10 else '.' for i in sorted_number_list])) | |
# output_digit = ''.join([str(int(i[2])) if i[2]!=10 else '.' for i in sorted_number_list[:10]]) | |
return output_digit | |