Spaces:
Running
Running
import json | |
import os | |
import re | |
import tarfile | |
import zipfile | |
from pathlib import Path | |
from shutil import copyfile, rmtree | |
from typing import Dict, List, Tuple | |
import fsspec | |
import requests | |
from tqdm import tqdm | |
from TTS.config import load_config, read_json_with_comments | |
from TTS.utils.generic_utils import get_user_data_dir | |
LICENSE_URLS = { | |
"cc by-nc-nd 4.0": "https://creativecommons.org/licenses/by-nc-nd/4.0/", | |
"mpl": "https://www.mozilla.org/en-US/MPL/2.0/", | |
"mpl2": "https://www.mozilla.org/en-US/MPL/2.0/", | |
"mpl 2.0": "https://www.mozilla.org/en-US/MPL/2.0/", | |
"mit": "https://choosealicense.com/licenses/mit/", | |
"apache 2.0": "https://choosealicense.com/licenses/apache-2.0/", | |
"apache2": "https://choosealicense.com/licenses/apache-2.0/", | |
"cc-by-sa 4.0": "https://creativecommons.org/licenses/by-sa/4.0/", | |
"cpml": "https://coqui.ai/cpml.txt", | |
} | |
class ModelManager(object): | |
tqdm_progress = None | |
"""Manage TTS models defined in .models.json. | |
It provides an interface to list and download | |
models defines in '.model.json' | |
Models are downloaded under '.TTS' folder in the user's | |
home path. | |
Args: | |
models_file (str): path to .model.json file. Defaults to None. | |
output_prefix (str): prefix to `tts` to download models. Defaults to None | |
progress_bar (bool): print a progress bar when donwloading a file. Defaults to False. | |
verbose (bool): print info. Defaults to True. | |
""" | |
def __init__(self, models_file=None, output_prefix=None, progress_bar=False, verbose=True): | |
super().__init__() | |
self.progress_bar = progress_bar | |
self.verbose = verbose | |
if output_prefix is None: | |
self.output_prefix = get_user_data_dir("tts") | |
else: | |
self.output_prefix = os.path.join(output_prefix, "tts") | |
self.models_dict = None | |
if models_file is not None: | |
self.read_models_file(models_file) | |
else: | |
# try the default location | |
path = Path(__file__).parent / "../.models.json" | |
self.read_models_file(path) | |
def read_models_file(self, file_path): | |
"""Read .models.json as a dict | |
Args: | |
file_path (str): path to .models.json. | |
""" | |
self.models_dict = read_json_with_comments(file_path) | |
def _list_models(self, model_type, model_count=0): | |
if self.verbose: | |
print("\n Name format: type/language/dataset/model") | |
model_list = [] | |
for lang in self.models_dict[model_type]: | |
for dataset in self.models_dict[model_type][lang]: | |
for model in self.models_dict[model_type][lang][dataset]: | |
model_full_name = f"{model_type}--{lang}--{dataset}--{model}" | |
output_path = os.path.join(self.output_prefix, model_full_name) | |
if self.verbose: | |
if os.path.exists(output_path): | |
print(f" {model_count}: {model_type}/{lang}/{dataset}/{model} [already downloaded]") | |
else: | |
print(f" {model_count}: {model_type}/{lang}/{dataset}/{model}") | |
model_list.append(f"{model_type}/{lang}/{dataset}/{model}") | |
model_count += 1 | |
return model_list | |
def _list_for_model_type(self, model_type): | |
models_name_list = [] | |
model_count = 1 | |
models_name_list.extend(self._list_models(model_type, model_count)) | |
return models_name_list | |
def list_models(self): | |
models_name_list = [] | |
model_count = 1 | |
for model_type in self.models_dict: | |
model_list = self._list_models(model_type, model_count) | |
models_name_list.extend(model_list) | |
return models_name_list | |
def model_info_by_idx(self, model_query): | |
"""Print the description of the model from .models.json file using model_idx | |
Args: | |
model_query (str): <model_tye>/<model_idx> | |
""" | |
model_name_list = [] | |
model_type, model_query_idx = model_query.split("/") | |
try: | |
model_query_idx = int(model_query_idx) | |
if model_query_idx <= 0: | |
print("> model_query_idx should be a positive integer!") | |
return | |
except: | |
print("> model_query_idx should be an integer!") | |
return | |
model_count = 0 | |
if model_type in self.models_dict: | |
for lang in self.models_dict[model_type]: | |
for dataset in self.models_dict[model_type][lang]: | |
for model in self.models_dict[model_type][lang][dataset]: | |
model_name_list.append(f"{model_type}/{lang}/{dataset}/{model}") | |
model_count += 1 | |
else: | |
print(f"> model_type {model_type} does not exist in the list.") | |
return | |
if model_query_idx > model_count: | |
print(f"model query idx exceeds the number of available models [{model_count}] ") | |
else: | |
model_type, lang, dataset, model = model_name_list[model_query_idx - 1].split("/") | |
print(f"> model type : {model_type}") | |
print(f"> language supported : {lang}") | |
print(f"> dataset used : {dataset}") | |
print(f"> model name : {model}") | |
if "description" in self.models_dict[model_type][lang][dataset][model]: | |
print(f"> description : {self.models_dict[model_type][lang][dataset][model]['description']}") | |
else: | |
print("> description : coming soon") | |
if "default_vocoder" in self.models_dict[model_type][lang][dataset][model]: | |
print(f"> default_vocoder : {self.models_dict[model_type][lang][dataset][model]['default_vocoder']}") | |
def model_info_by_full_name(self, model_query_name): | |
"""Print the description of the model from .models.json file using model_full_name | |
Args: | |
model_query_name (str): Format is <model_type>/<language>/<dataset>/<model_name> | |
""" | |
model_type, lang, dataset, model = model_query_name.split("/") | |
if model_type in self.models_dict: | |
if lang in self.models_dict[model_type]: | |
if dataset in self.models_dict[model_type][lang]: | |
if model in self.models_dict[model_type][lang][dataset]: | |
print(f"> model type : {model_type}") | |
print(f"> language supported : {lang}") | |
print(f"> dataset used : {dataset}") | |
print(f"> model name : {model}") | |
if "description" in self.models_dict[model_type][lang][dataset][model]: | |
print( | |
f"> description : {self.models_dict[model_type][lang][dataset][model]['description']}" | |
) | |
else: | |
print("> description : coming soon") | |
if "default_vocoder" in self.models_dict[model_type][lang][dataset][model]: | |
print( | |
f"> default_vocoder : {self.models_dict[model_type][lang][dataset][model]['default_vocoder']}" | |
) | |
else: | |
print(f"> model {model} does not exist for {model_type}/{lang}/{dataset}.") | |
else: | |
print(f"> dataset {dataset} does not exist for {model_type}/{lang}.") | |
else: | |
print(f"> lang {lang} does not exist for {model_type}.") | |
else: | |
print(f"> model_type {model_type} does not exist in the list.") | |
def list_tts_models(self): | |
"""Print all `TTS` models and return a list of model names | |
Format is `language/dataset/model` | |
""" | |
return self._list_for_model_type("tts_models") | |
def list_vocoder_models(self): | |
"""Print all the `vocoder` models and return a list of model names | |
Format is `language/dataset/model` | |
""" | |
return self._list_for_model_type("vocoder_models") | |
def list_vc_models(self): | |
"""Print all the voice conversion models and return a list of model names | |
Format is `language/dataset/model` | |
""" | |
return self._list_for_model_type("voice_conversion_models") | |
def list_langs(self): | |
"""Print all the available languages""" | |
print(" Name format: type/language") | |
for model_type in self.models_dict: | |
for lang in self.models_dict[model_type]: | |
print(f" >: {model_type}/{lang} ") | |
def list_datasets(self): | |
"""Print all the datasets""" | |
print(" Name format: type/language/dataset") | |
for model_type in self.models_dict: | |
for lang in self.models_dict[model_type]: | |
for dataset in self.models_dict[model_type][lang]: | |
print(f" >: {model_type}/{lang}/{dataset}") | |
def print_model_license(model_item: Dict): | |
"""Print the license of a model | |
Args: | |
model_item (dict): model item in the models.json | |
""" | |
if "license" in model_item and model_item["license"].strip() != "": | |
print(f" > Model's license - {model_item['license']}") | |
if model_item["license"].lower() in LICENSE_URLS: | |
print(f" > Check {LICENSE_URLS[model_item['license'].lower()]} for more info.") | |
else: | |
print(" > Check https://opensource.org/licenses for more info.") | |
else: | |
print(" > Model's license - No license information available") | |
def _download_github_model(self, model_item: Dict, output_path: str): | |
if isinstance(model_item["github_rls_url"], list): | |
self._download_model_files(model_item["github_rls_url"], output_path, self.progress_bar) | |
else: | |
self._download_zip_file(model_item["github_rls_url"], output_path, self.progress_bar) | |
def _download_hf_model(self, model_item: Dict, output_path: str): | |
if isinstance(model_item["hf_url"], list): | |
self._download_model_files(model_item["hf_url"], output_path, self.progress_bar) | |
else: | |
self._download_zip_file(model_item["hf_url"], output_path, self.progress_bar) | |
def download_fairseq_model(self, model_name, output_path): | |
URI_PREFIX = "https://coqui.gateway.scarf.sh/fairseq/" | |
_, lang, _, _ = model_name.split("/") | |
model_download_uri = os.path.join(URI_PREFIX, f"{lang}.tar.gz") | |
self._download_tar_file(model_download_uri, output_path, self.progress_bar) | |
def set_model_url(model_item: Dict): | |
model_item["model_url"] = None | |
if "github_rls_url" in model_item: | |
model_item["model_url"] = model_item["github_rls_url"] | |
elif "hf_url" in model_item: | |
model_item["model_url"] = model_item["hf_url"] | |
elif "fairseq" in model_item["model_name"]: | |
model_item["model_url"] = "https://coqui.gateway.scarf.sh/fairseq/" | |
elif "xtts" in model_item["model_name"]: | |
model_item["model_url"] = "https://coqui.gateway.scarf.sh/xtts/" | |
return model_item | |
def _set_model_item(self, model_name): | |
# fetch model info from the dict | |
if "fairseq" in model_name: | |
model_type = "tts_models" | |
lang = model_name.split("/")[1] | |
model_item = { | |
"model_type": "tts_models", | |
"license": "CC BY-NC 4.0", | |
"default_vocoder": None, | |
"author": "fairseq", | |
"description": "this model is released by Meta under Fairseq repo. Visit https://github.com/facebookresearch/fairseq/tree/main/examples/mms for more info.", | |
} | |
model_item["model_name"] = model_name | |
elif "xtts" in model_name and len(model_name.split("/")) != 4: | |
# loading xtts models with only model name (e.g. xtts_v2.0.2) | |
# check model name has the version number with regex | |
version_regex = r"v\d+\.\d+\.\d+" | |
if re.search(version_regex, model_name): | |
model_version = model_name.split("_")[-1] | |
else: | |
model_version = "main" | |
model_type = "tts_models" | |
lang = "multilingual" | |
dataset = "multi-dataset" | |
model = model_name | |
model_item = { | |
"default_vocoder": None, | |
"license": "CPML", | |
"contact": "info@coqui.ai", | |
"tos_required": True, | |
"hf_url": [ | |
f"https://coqui.gateway.scarf.sh/hf-coqui/XTTS-v2/{model_version}/model.pth", | |
f"https://coqui.gateway.scarf.sh/hf-coqui/XTTS-v2/{model_version}/config.json", | |
f"https://coqui.gateway.scarf.sh/hf-coqui/XTTS-v2/{model_version}/vocab.json", | |
f"https://coqui.gateway.scarf.sh/hf-coqui/XTTS-v2/{model_version}/hash.md5", | |
f"https://coqui.gateway.scarf.sh/hf-coqui/XTTS-v2/{model_version}/speakers_xtts.pth", | |
], | |
} | |
else: | |
# get model from models.json | |
model_type, lang, dataset, model = model_name.split("/") | |
model_item = self.models_dict[model_type][lang][dataset][model] | |
model_item["model_type"] = model_type | |
model_full_name = f"{model_type}--{lang}--{dataset}--{model}" | |
md5hash = model_item["model_hash"] if "model_hash" in model_item else None | |
model_item = self.set_model_url(model_item) | |
return model_item, model_full_name, model, md5hash | |
def ask_tos(model_full_path): | |
"""Ask the user to agree to the terms of service""" | |
tos_path = os.path.join(model_full_path, "tos_agreed.txt") | |
print(" > You must confirm the following:") | |
print(' | > "I have purchased a commercial license from Coqui: licensing@coqui.ai"') | |
print(' | > "Otherwise, I agree to the terms of the non-commercial CPML: https://coqui.ai/cpml" - [y/n]') | |
answer = input(" | | > ") | |
if answer.lower() == "y": | |
with open(tos_path, "w", encoding="utf-8") as f: | |
f.write("I have read, understood and agreed to the Terms and Conditions.") | |
return True | |
return False | |
def tos_agreed(model_item, model_full_path): | |
"""Check if the user has agreed to the terms of service""" | |
if "tos_required" in model_item and model_item["tos_required"]: | |
tos_path = os.path.join(model_full_path, "tos_agreed.txt") | |
if os.path.exists(tos_path) or os.environ.get("COQUI_TOS_AGREED") == "1": | |
return True | |
return False | |
return True | |
def create_dir_and_download_model(self, model_name, model_item, output_path): | |
os.makedirs(output_path, exist_ok=True) | |
# handle TOS | |
if not self.tos_agreed(model_item, output_path): | |
if not self.ask_tos(output_path): | |
os.rmdir(output_path) | |
raise Exception(" [!] You must agree to the terms of service to use this model.") | |
print(f" > Downloading model to {output_path}") | |
try: | |
if "fairseq" in model_name: | |
self.download_fairseq_model(model_name, output_path) | |
elif "github_rls_url" in model_item: | |
self._download_github_model(model_item, output_path) | |
elif "hf_url" in model_item: | |
self._download_hf_model(model_item, output_path) | |
except requests.RequestException as e: | |
print(f" > Failed to download the model file to {output_path}") | |
rmtree(output_path) | |
raise e | |
self.print_model_license(model_item=model_item) | |
def check_if_configs_are_equal(self, model_name, model_item, output_path): | |
with fsspec.open(self._find_files(output_path)[1], "r", encoding="utf-8") as f: | |
config_local = json.load(f) | |
remote_url = None | |
for url in model_item["hf_url"]: | |
if "config.json" in url: | |
remote_url = url | |
break | |
with fsspec.open(remote_url, "r", encoding="utf-8") as f: | |
config_remote = json.load(f) | |
if not config_local == config_remote: | |
print(f" > {model_name} is already downloaded however it has been changed. Redownloading it...") | |
self.create_dir_and_download_model(model_name, model_item, output_path) | |
def download_model(self, model_name): | |
"""Download model files given the full model name. | |
Model name is in the format | |
'type/language/dataset/model' | |
e.g. 'tts_model/en/ljspeech/tacotron' | |
Every model must have the following files: | |
- *.pth : pytorch model checkpoint file. | |
- config.json : model config file. | |
- scale_stats.npy (if exist): scale values for preprocessing. | |
Args: | |
model_name (str): model name as explained above. | |
""" | |
model_item, model_full_name, model, md5sum = self._set_model_item(model_name) | |
# set the model specific output path | |
output_path = os.path.join(self.output_prefix, model_full_name) | |
if os.path.exists(output_path): | |
if md5sum is not None: | |
md5sum_file = os.path.join(output_path, "hash.md5") | |
if os.path.isfile(md5sum_file): | |
with open(md5sum_file, mode="r") as f: | |
if not f.read() == md5sum: | |
print(f" > {model_name} has been updated, clearing model cache...") | |
self.create_dir_and_download_model(model_name, model_item, output_path) | |
else: | |
print(f" > {model_name} is already downloaded.") | |
else: | |
print(f" > {model_name} has been updated, clearing model cache...") | |
self.create_dir_and_download_model(model_name, model_item, output_path) | |
# if the configs are different, redownload it | |
# ToDo: we need a better way to handle it | |
if "xtts" in model_name: | |
try: | |
self.check_if_configs_are_equal(model_name, model_item, output_path) | |
except: | |
pass | |
else: | |
print(f" > {model_name} is already downloaded.") | |
else: | |
self.create_dir_and_download_model(model_name, model_item, output_path) | |
# find downloaded files | |
output_model_path = output_path | |
output_config_path = None | |
if ( | |
model not in ["tortoise-v2", "bark"] and "fairseq" not in model_name and "xtts" not in model_name | |
): # TODO:This is stupid but don't care for now. | |
output_model_path, output_config_path = self._find_files(output_path) | |
# update paths in the config.json | |
self._update_paths(output_path, output_config_path) | |
return output_model_path, output_config_path, model_item | |
def _find_files(output_path: str) -> Tuple[str, str]: | |
"""Find the model and config files in the output path | |
Args: | |
output_path (str): path to the model files | |
Returns: | |
Tuple[str, str]: path to the model file and config file | |
""" | |
model_file = None | |
config_file = None | |
for file_name in os.listdir(output_path): | |
if file_name in ["model_file.pth", "model_file.pth.tar", "model.pth"]: | |
model_file = os.path.join(output_path, file_name) | |
elif file_name == "config.json": | |
config_file = os.path.join(output_path, file_name) | |
if model_file is None: | |
raise ValueError(" [!] Model file not found in the output path") | |
if config_file is None: | |
raise ValueError(" [!] Config file not found in the output path") | |
return model_file, config_file | |
def _find_speaker_encoder(output_path: str) -> str: | |
"""Find the speaker encoder file in the output path | |
Args: | |
output_path (str): path to the model files | |
Returns: | |
str: path to the speaker encoder file | |
""" | |
speaker_encoder_file = None | |
for file_name in os.listdir(output_path): | |
if file_name in ["model_se.pth", "model_se.pth.tar"]: | |
speaker_encoder_file = os.path.join(output_path, file_name) | |
return speaker_encoder_file | |
def _update_paths(self, output_path: str, config_path: str) -> None: | |
"""Update paths for certain files in config.json after download. | |
Args: | |
output_path (str): local path the model is downloaded to. | |
config_path (str): local config.json path. | |
""" | |
output_stats_path = os.path.join(output_path, "scale_stats.npy") | |
output_d_vector_file_path = os.path.join(output_path, "speakers.json") | |
output_d_vector_file_pth_path = os.path.join(output_path, "speakers.pth") | |
output_speaker_ids_file_path = os.path.join(output_path, "speaker_ids.json") | |
output_speaker_ids_file_pth_path = os.path.join(output_path, "speaker_ids.pth") | |
speaker_encoder_config_path = os.path.join(output_path, "config_se.json") | |
speaker_encoder_model_path = self._find_speaker_encoder(output_path) | |
# update the scale_path.npy file path in the model config.json | |
self._update_path("audio.stats_path", output_stats_path, config_path) | |
# update the speakers.json file path in the model config.json to the current path | |
self._update_path("d_vector_file", output_d_vector_file_path, config_path) | |
self._update_path("d_vector_file", output_d_vector_file_pth_path, config_path) | |
self._update_path("model_args.d_vector_file", output_d_vector_file_path, config_path) | |
self._update_path("model_args.d_vector_file", output_d_vector_file_pth_path, config_path) | |
# update the speaker_ids.json file path in the model config.json to the current path | |
self._update_path("speakers_file", output_speaker_ids_file_path, config_path) | |
self._update_path("speakers_file", output_speaker_ids_file_pth_path, config_path) | |
self._update_path("model_args.speakers_file", output_speaker_ids_file_path, config_path) | |
self._update_path("model_args.speakers_file", output_speaker_ids_file_pth_path, config_path) | |
# update the speaker_encoder file path in the model config.json to the current path | |
self._update_path("speaker_encoder_model_path", speaker_encoder_model_path, config_path) | |
self._update_path("model_args.speaker_encoder_model_path", speaker_encoder_model_path, config_path) | |
self._update_path("speaker_encoder_config_path", speaker_encoder_config_path, config_path) | |
self._update_path("model_args.speaker_encoder_config_path", speaker_encoder_config_path, config_path) | |
def _update_path(field_name, new_path, config_path): | |
"""Update the path in the model config.json for the current environment after download""" | |
if new_path and os.path.exists(new_path): | |
config = load_config(config_path) | |
field_names = field_name.split(".") | |
if len(field_names) > 1: | |
# field name points to a sub-level field | |
sub_conf = config | |
for fd in field_names[:-1]: | |
if fd in sub_conf: | |
sub_conf = sub_conf[fd] | |
else: | |
return | |
if isinstance(sub_conf[field_names[-1]], list): | |
sub_conf[field_names[-1]] = [new_path] | |
else: | |
sub_conf[field_names[-1]] = new_path | |
else: | |
# field name points to a top-level field | |
if not field_name in config: | |
return | |
if isinstance(config[field_name], list): | |
config[field_name] = [new_path] | |
else: | |
config[field_name] = new_path | |
config.save_json(config_path) | |
def _download_zip_file(file_url, output_folder, progress_bar): | |
"""Download the github releases""" | |
# download the file | |
r = requests.get(file_url, stream=True) | |
# extract the file | |
try: | |
total_size_in_bytes = int(r.headers.get("content-length", 0)) | |
block_size = 1024 # 1 Kibibyte | |
if progress_bar: | |
ModelManager.tqdm_progress = tqdm(total=total_size_in_bytes, unit="iB", unit_scale=True) | |
temp_zip_name = os.path.join(output_folder, file_url.split("/")[-1]) | |
with open(temp_zip_name, "wb") as file: | |
for data in r.iter_content(block_size): | |
if progress_bar: | |
ModelManager.tqdm_progress.update(len(data)) | |
file.write(data) | |
with zipfile.ZipFile(temp_zip_name) as z: | |
z.extractall(output_folder) | |
os.remove(temp_zip_name) # delete zip after extract | |
except zipfile.BadZipFile: | |
print(f" > Error: Bad zip file - {file_url}") | |
raise zipfile.BadZipFile # pylint: disable=raise-missing-from | |
# move the files to the outer path | |
for file_path in z.namelist(): | |
src_path = os.path.join(output_folder, file_path) | |
if os.path.isfile(src_path): | |
dst_path = os.path.join(output_folder, os.path.basename(file_path)) | |
if src_path != dst_path: | |
copyfile(src_path, dst_path) | |
# remove redundant (hidden or not) folders | |
for file_path in z.namelist(): | |
if os.path.isdir(os.path.join(output_folder, file_path)): | |
rmtree(os.path.join(output_folder, file_path)) | |
def _download_tar_file(file_url, output_folder, progress_bar): | |
"""Download the github releases""" | |
# download the file | |
r = requests.get(file_url, stream=True) | |
# extract the file | |
try: | |
total_size_in_bytes = int(r.headers.get("content-length", 0)) | |
block_size = 1024 # 1 Kibibyte | |
if progress_bar: | |
ModelManager.tqdm_progress = tqdm(total=total_size_in_bytes, unit="iB", unit_scale=True) | |
temp_tar_name = os.path.join(output_folder, file_url.split("/")[-1]) | |
with open(temp_tar_name, "wb") as file: | |
for data in r.iter_content(block_size): | |
if progress_bar: | |
ModelManager.tqdm_progress.update(len(data)) | |
file.write(data) | |
with tarfile.open(temp_tar_name) as t: | |
t.extractall(output_folder) | |
tar_names = t.getnames() | |
os.remove(temp_tar_name) # delete tar after extract | |
except tarfile.ReadError: | |
print(f" > Error: Bad tar file - {file_url}") | |
raise tarfile.ReadError # pylint: disable=raise-missing-from | |
# move the files to the outer path | |
for file_path in os.listdir(os.path.join(output_folder, tar_names[0])): | |
src_path = os.path.join(output_folder, tar_names[0], file_path) | |
dst_path = os.path.join(output_folder, os.path.basename(file_path)) | |
if src_path != dst_path: | |
copyfile(src_path, dst_path) | |
# remove the extracted folder | |
rmtree(os.path.join(output_folder, tar_names[0])) | |
def _download_model_files(file_urls, output_folder, progress_bar): | |
"""Download the github releases""" | |
for file_url in file_urls: | |
# download the file | |
r = requests.get(file_url, stream=True) | |
# extract the file | |
bease_filename = file_url.split("/")[-1] | |
temp_zip_name = os.path.join(output_folder, bease_filename) | |
total_size_in_bytes = int(r.headers.get("content-length", 0)) | |
block_size = 1024 # 1 Kibibyte | |
with open(temp_zip_name, "wb") as file: | |
if progress_bar: | |
ModelManager.tqdm_progress = tqdm(total=total_size_in_bytes, unit="iB", unit_scale=True) | |
for data in r.iter_content(block_size): | |
if progress_bar: | |
ModelManager.tqdm_progress.update(len(data)) | |
file.write(data) | |
def _check_dict_key(my_dict, key): | |
if key in my_dict.keys() and my_dict[key] is not None: | |
if not isinstance(key, str): | |
return True | |
if isinstance(key, str) and len(my_dict[key]) > 0: | |
return True | |
return False | |