Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -5,6 +5,7 @@ import skimage.io as io
|
|
5 |
import streamlit as st
|
6 |
from transformers import GPT2Tokenizer, GPT2LMHeadModel, AdamW, get_linear_schedule_with_warmup
|
7 |
from model import generate2,ClipCaptionModel
|
|
|
8 |
|
9 |
#model loading code
|
10 |
|
@@ -25,8 +26,6 @@ coco_model.load_state_dict(torch.load('COCO_model.h5',map_location=torch.device(
|
|
25 |
model = model.eval()
|
26 |
|
27 |
|
28 |
-
|
29 |
-
|
30 |
def ui():
|
31 |
st.markdown("# Image Captioning")
|
32 |
uploaded_file = st.file_uploader("Upload an Image", type=['png', 'jpeg', 'jpg'])
|
@@ -36,10 +35,9 @@ def ui():
|
|
36 |
pil_image = PIL.Image.fromarray(image)
|
37 |
image = preprocess(pil_image).unsqueeze(0).to(device)
|
38 |
|
39 |
-
option = st.selectbox('Please select the Model',('Model', 'COCO Model'))
|
40 |
|
41 |
if option=='Model':
|
42 |
-
|
43 |
with torch.no_grad():
|
44 |
prefix = clip_model.encode_image(image).to(device, dtype=torch.float32)
|
45 |
prefix_embed = model.clip_project(prefix).reshape(1, prefix_length, -1)
|
@@ -57,6 +55,11 @@ def ui():
|
|
57 |
st.image(uploaded_file, width = 500, channels = 'RGB')
|
58 |
st.markdown("**PREDICTION:** " + generated_text_prefix)
|
59 |
|
|
|
|
|
|
|
|
|
|
|
60 |
|
61 |
if __name__ == '__main__':
|
62 |
ui()
|
|
|
5 |
import streamlit as st
|
6 |
from transformers import GPT2Tokenizer, GPT2LMHeadModel, AdamW, get_linear_schedule_with_warmup
|
7 |
from model import generate2,ClipCaptionModel
|
8 |
+
from engine import inference
|
9 |
|
10 |
#model loading code
|
11 |
|
|
|
26 |
model = model.eval()
|
27 |
|
28 |
|
|
|
|
|
29 |
def ui():
|
30 |
st.markdown("# Image Captioning")
|
31 |
uploaded_file = st.file_uploader("Upload an Image", type=['png', 'jpeg', 'jpg'])
|
|
|
35 |
pil_image = PIL.Image.fromarray(image)
|
36 |
image = preprocess(pil_image).unsqueeze(0).to(device)
|
37 |
|
38 |
+
option = st.selectbox('Please select the Model',('Model', 'COCO Model','PreTrained Model'))
|
39 |
|
40 |
if option=='Model':
|
|
|
41 |
with torch.no_grad():
|
42 |
prefix = clip_model.encode_image(image).to(device, dtype=torch.float32)
|
43 |
prefix_embed = model.clip_project(prefix).reshape(1, prefix_length, -1)
|
|
|
55 |
st.image(uploaded_file, width = 500, channels = 'RGB')
|
56 |
st.markdown("**PREDICTION:** " + generated_text_prefix)
|
57 |
|
58 |
+
elif option=='PreTrained Model':
|
59 |
+
out = inference(uploaded_file)
|
60 |
+
st.image(uploaded_file, width = 500, channels = 'RGB')
|
61 |
+
st.markdown("**PREDICTION:** " + out)
|
62 |
+
|
63 |
|
64 |
if __name__ == '__main__':
|
65 |
ui()
|