Upload 3 files
Browse files- app.py +105 -0
- helper.py +83 -0
- requirements.txt +11 -0
app.py
ADDED
@@ -0,0 +1,105 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import tempfile
|
2 |
+
import streamlit as st
|
3 |
+
from streamlit_chat import message
|
4 |
+
|
5 |
+
import torch
|
6 |
+
import torch.nn
|
7 |
+
|
8 |
+
import transformers
|
9 |
+
from transformers import (
|
10 |
+
AutoModelForCausalLM,
|
11 |
+
AutoTokenizer,
|
12 |
+
BitsAndBytesConfig,
|
13 |
+
HfArgumentParser,
|
14 |
+
TrainingArguments,
|
15 |
+
pipeline,
|
16 |
+
logging,
|
17 |
+
)
|
18 |
+
|
19 |
+
|
20 |
+
import pandas as pd
|
21 |
+
import numpy as np
|
22 |
+
import os
|
23 |
+
import io
|
24 |
+
|
25 |
+
from langchain.document_loaders import TextLoader
|
26 |
+
from langchain import PromptTemplate
|
27 |
+
from langchain.text_splitter import CharacterTextSplitter
|
28 |
+
from langchain.document_loaders import PyPDFLoader
|
29 |
+
from langchain.embeddings import HuggingFaceEmbeddings
|
30 |
+
from langchain.vectorstores import FAISS
|
31 |
+
from langchain.chains.question_answering import load_qa_chain
|
32 |
+
from langchain.chains import RetrievalQA
|
33 |
+
from langchain import HuggingFacePipeline
|
34 |
+
|
35 |
+
from helper import conversational_chat,pdf_loader,splitDoc,makeEmbeddings,create_flan_t5_base,conversational_chat
|
36 |
+
|
37 |
+
|
38 |
+
|
39 |
+
|
40 |
+
|
41 |
+
def ui():
|
42 |
+
st.title('PDF Question Answer Bot')
|
43 |
+
hugging_face_key = os.environ["HUGGINGFACE_HUB_TOKEN"]
|
44 |
+
llm = create_flan_t5_base(load_in_8bit=False)
|
45 |
+
hf_llm = HuggingFacePipeline(pipeline=llm)
|
46 |
+
|
47 |
+
uploaded_file = st.file_uploader("Choose a PDF file", type=["pdf"])
|
48 |
+
#saving the uploaded pdf file
|
49 |
+
save_path = "./uploaded_file.pdf"
|
50 |
+
with open(save_path, "wb") as f:
|
51 |
+
f.write(uploaded_file.read())
|
52 |
+
|
53 |
+
#loading the pdf file
|
54 |
+
pdf_doc=pdf_loader('./uploaded_file.pdf')
|
55 |
+
vector_database = makeEmbeddings(pdf_doc)
|
56 |
+
#making the retriever of the vector database
|
57 |
+
retriever = vector_database.as_retriever(search_kwargs={"k":4})
|
58 |
+
qa_chain = RetrievalQA.from_chain_type(llm=hf_llm, chain_type="stuff",retriever=retriever)
|
59 |
+
|
60 |
+
# Create an empty container to hold the PDF loader section
|
61 |
+
pdf_loader_container = st.empty()
|
62 |
+
|
63 |
+
# Check if the PDF file is uploaded or not
|
64 |
+
if uploaded_file is not None:
|
65 |
+
print("The file has been uploaded successfully")
|
66 |
+
# Hide the PDF loader interface when the file is uploaded
|
67 |
+
pdf_loader_container.empty()
|
68 |
+
# Show the chat interface
|
69 |
+
show_chat_interface(qa_chain)
|
70 |
+
|
71 |
+
def show_chat_interface(qa_chain):
|
72 |
+
if 'history' not in st.session_state:
|
73 |
+
st.session_state['history'] = []
|
74 |
+
|
75 |
+
if 'generated' not in st.session_state:
|
76 |
+
st.session_state['generated'] = ["Hello ! Ask me anything about the Uploaded PDF " + " 🤗"]
|
77 |
+
|
78 |
+
if 'past' not in st.session_state:
|
79 |
+
st.session_state['past'] = ["Hey ! 👋"]
|
80 |
+
|
81 |
+
response_container = st.container()
|
82 |
+
#container for the user's text input
|
83 |
+
container = st.container()
|
84 |
+
|
85 |
+
with container:
|
86 |
+
with st.form(key='my_form', clear_on_submit=True):
|
87 |
+
|
88 |
+
user_input = st.text_input("Query:", placeholder="Talk about your PDF data here (:", key='input')
|
89 |
+
submit_button = st.form_submit_button(label='Send')
|
90 |
+
|
91 |
+
if submit_button and user_input:
|
92 |
+
output = conversational_chat(qa_chain,user_input)
|
93 |
+
|
94 |
+
st.session_state['past'].append(user_input)
|
95 |
+
st.session_state['generated'].append(output)
|
96 |
+
|
97 |
+
if st.session_state['generated']:
|
98 |
+
with response_container:
|
99 |
+
for i in range(len(st.session_state['generated'])):
|
100 |
+
message(st.session_state["past"][i], is_user=True, key=str(i) + '_user', avatar_style="big-smile")
|
101 |
+
message(st.session_state["generated"][i], key=str(i), avatar_style="thumbs")
|
102 |
+
|
103 |
+
|
104 |
+
if __name__=='__main__':
|
105 |
+
ui()
|
helper.py
ADDED
@@ -0,0 +1,83 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import tempfile
|
2 |
+
import streamlit as st
|
3 |
+
from streamlit_chat import message
|
4 |
+
|
5 |
+
import torch
|
6 |
+
import torch.nn
|
7 |
+
|
8 |
+
import transformers
|
9 |
+
from transformers import (
|
10 |
+
AutoModelForCausalLM,
|
11 |
+
AutoTokenizer,
|
12 |
+
BitsAndBytesConfig,
|
13 |
+
HfArgumentParser,
|
14 |
+
TrainingArguments,
|
15 |
+
pipeline,
|
16 |
+
logging,
|
17 |
+
)
|
18 |
+
|
19 |
+
|
20 |
+
import pandas as pd
|
21 |
+
import numpy as np
|
22 |
+
import os
|
23 |
+
import io
|
24 |
+
|
25 |
+
from langchain.document_loaders import TextLoader
|
26 |
+
from langchain import PromptTemplate
|
27 |
+
from langchain.text_splitter import CharacterTextSplitter
|
28 |
+
from langchain.document_loaders import PyPDFLoader
|
29 |
+
from langchain.embeddings import HuggingFaceEmbeddings
|
30 |
+
from langchain.vectorstores import FAISS
|
31 |
+
from langchain.chains.question_answering import load_qa_chain
|
32 |
+
from langchain.chains import RetrievalQA
|
33 |
+
from langchain import HuggingFacePipeline
|
34 |
+
|
35 |
+
|
36 |
+
def pdf_loader(file_path):
|
37 |
+
'''This is a function for loading the PDFs
|
38 |
+
Params:
|
39 |
+
file_path: The path of the PDF file
|
40 |
+
'''
|
41 |
+
output_file = "Loaded_PDF.txt"
|
42 |
+
loader = PyPDFLoader(file_path)
|
43 |
+
pdf_file_as_loaded_docs = loader.load()
|
44 |
+
return pdf_file_as_loaded_docs
|
45 |
+
|
46 |
+
def splitDoc(loaded_docs):
|
47 |
+
'''This is a function that creates the chunks of our loaded Document
|
48 |
+
Params:
|
49 |
+
loaded_docs:The loaded document from the pdf_loader function'''
|
50 |
+
splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=10)
|
51 |
+
chunked_docs = splitter.split_documents(loaded_docs)
|
52 |
+
return chunked_docs
|
53 |
+
|
54 |
+
def makeEmbeddings(chunked_docs):
|
55 |
+
'''This is a functuon for making the embeddings of the chunked document
|
56 |
+
Params:
|
57 |
+
chunked_docs:The chunked docs'''
|
58 |
+
embedder = HuggingFaceEmbeddings()
|
59 |
+
vector_store = FAISS.from_documents(chunked_docs, embedder)#making a FAISS based vector data
|
60 |
+
return vector_store
|
61 |
+
|
62 |
+
|
63 |
+
def create_flan_t5_base(load_in_8bit=False):
|
64 |
+
''''Loading the Flan T5 base in the form of pipeline'''
|
65 |
+
# Wrap it in HF pipeline for use with LangChain
|
66 |
+
model="google/flan-t5-base"
|
67 |
+
tokenizer = AutoTokenizer.from_pretrained(model)
|
68 |
+
return pipeline(
|
69 |
+
task="text2text-generation",
|
70 |
+
model=model,
|
71 |
+
tokenizer = tokenizer,
|
72 |
+
max_new_tokens=100,
|
73 |
+
model_kwargs={ "load_in_8bit": load_in_8bit, "max_length": 512, "temperature": 0.}
|
74 |
+
)
|
75 |
+
|
76 |
+
def conversational_chat(chain,query):
|
77 |
+
result = chain({"question": query,
|
78 |
+
"chat_history": st.session_state['history']})
|
79 |
+
st.session_state['history'].append((query, result["answer"]))
|
80 |
+
|
81 |
+
return result["answer"]
|
82 |
+
|
83 |
+
|
requirements.txt
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
langchain
|
2 |
+
huggingfacehub
|
3 |
+
langchain
|
4 |
+
streamlit
|
5 |
+
openai
|
6 |
+
tiktoken
|
7 |
+
faiss-cpu
|
8 |
+
streamlit_chat
|
9 |
+
transformers
|
10 |
+
sentence_transformers
|
11 |
+
pypdf
|