SegmentAnything / app.py
VTechAI's picture
Update app.py
c5730d9
import os
import app_configs as configs
from feedback import Feedback
import service
import gradio as gr
import numpy as np
import cv2
from PIL import Image
import logging
from huggingface_hub import hf_hub_download
import torch
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger()
sam = None #service.get_sam(configs.model_type, configs.model_ckpt_path, configs.device)
red = (255,0,0)
blue = (0,0,255)
def load_sam_instance():
global sam
if sam is None:
gr.Info('Initialising SAM, hang in there...')
if not os.path.exists(configs.model_ckpt_path):
chkpt_path = hf_hub_download("ybelkada/segment-anything", configs.model_ckpt_path)
else:
chkpt_path = configs.model_ckpt_path
device = configs.device
if device is None:
device = 'cuda' if torch.cuda.is_available() else 'cpu'
sam = service.get_sam(configs.model_type, chkpt_path, device)
return sam
block = gr.Blocks()
with block:
# states
def point_coords_empty():
return []
def point_labels_empty():
return []
raw_image = gr.Image(type='pil', visible=False)
point_coords = gr.State(point_coords_empty)
point_labels = gr.State(point_labels_empty)
masks = gr.State()
cutout_idx = gr.State(set())
feedback = gr.State(lambda : Feedback())
# UI
with gr.Column():
with gr.Row():
input_image = gr.Image(label='Input', height=512, type='pil')
masks_annotated_image = gr.AnnotatedImage(label='Segments', height=512)
cutout_galary = gr.Gallery(label='Cutouts', object_fit='contain', height=512)
with gr.Row():
with gr.Column(scale=1):
point_label_radio = gr.Radio(label='Point Label', choices=[1,0], value=1)
with gr.Row():
run_btn = gr.Button('Run', variant = 'primary')
reset_btn = gr.Button('Reset')
#with gr.Column(scale=2):
# with gr.Accordion('Provide Feedback', open=False):
# feedback_textbox = gr.Textbox(lines=3, show_label=False, info="Comments (Leave blank to vote without any comments)")
# with gr.Row():
# upvote_button = gr.Button('Upvote')
# downvote_button = gr.Button('Downvote')
# components
components = {
point_coords, point_labels, raw_image, masks, cutout_idx,
feedback,
input_image, point_label_radio, reset_btn, run_btn, masks_annotated_image}
# event - init coords
def on_reset_btn_click(raw_image):
return raw_image, point_coords_empty(), point_labels_empty(), None, []
reset_btn.click(on_reset_btn_click, [raw_image], [input_image, point_coords, point_labels], queue=False)
def on_input_image_upload(input_image):
return input_image, point_coords_empty(), point_labels_empty(), None
input_image.upload(on_input_image_upload, [input_image], [raw_image, point_coords, point_labels], queue=False)
# event - set coords
def on_input_image_select(input_image, point_coords, point_labels, point_label_radio, evt: gr.SelectData):
x, y = evt.index
color = red if point_label_radio == 0 else blue
img = np.array(input_image)
cv2.circle(img, (x, y), 5, color, -1)
img = Image.fromarray(img)
point_coords.append([x,y])
point_labels.append(point_label_radio)
return img, point_coords, point_labels
input_image.select(on_input_image_select, [input_image, point_coords, point_labels, point_label_radio], [input_image, point_coords, point_labels], queue=False)
# event - inference
def on_run_btn_click(inputs):
sam = load_sam_instance()
image = inputs[raw_image]
if len(inputs[point_coords]) == 0:
if configs.enable_segment_all:
generated_masks, _ = service.predict_all(sam, image)
else:
raise gr.Error('Segment-all disabled, set point label(s) before running')
else:
generated_masks, _ = service.predict_conditioned(sam,
image,
point_coords=np.array(inputs[point_coords]),
point_labels=np.array(inputs[point_labels]))
annotated = (image, [(generated_masks[i], f'Mask {i}') for i in range(len(generated_masks))])
inputs[feedback].save_inference(
pt_coords=inputs[point_coords],
pt_labels=inputs[point_labels],
image=inputs[raw_image],
mask=generated_masks,
)
return {
masks_annotated_image:annotated,
masks: generated_masks,
cutout_idx: set(),
feedback: inputs[feedback],
}
run_btn.click(on_run_btn_click, components, [masks_annotated_image, masks, cutout_idx, feedback], queue=True)
# event - get cutout
def on_masks_annotated_image_select(inputs, evt:gr.SelectData):
inputs[cutout_idx].add(evt.index)
cutouts = [service.cutout(inputs[raw_image], inputs[masks][idx]) for idx in list(inputs[cutout_idx])]
tight_cutouts = [service.crop_empty(cutout) for cutout in cutouts]
inputs[feedback].save_feedback(cutout_idx=evt.index)
return inputs[cutout_idx], tight_cutouts, inputs[feedback]
masks_annotated_image.select(on_masks_annotated_image_select, components, [cutout_idx, cutout_galary, feedback], queue=False)
# event - feedback
def on_upvote_button_click(inputs):
inputs[feedback].save_feedback(like=1, feedback_str=inputs[feedback_textbox])
gr.Info('Thanks for your feedback')
return {feedback:inputs[feedback],feedback_textbox:None}
#upvote_button.click(on_upvote_button_click,components,[feedback, feedback_textbox], queue=False)
def on_downvote_button_click(inputs):
inputs[feedback].save_feedback(like=-1, feedback_str=inputs[feedback_textbox])
gr.Info('Thanks for your feedback')
return {feedback:inputs[feedback],feedback_textbox:None}
#downvote_button.click(on_downvote_button_click,components,[feedback, feedback_textbox], queue=False)
if __name__ == '__main__':
block.queue()
block.launch()