Segment-Anything / transformers_4_35_0 /pipelines /automatic_speech_recognition.py
liuyizhang
add transformers_4_35_0
1ce5e18
raw history blame
No virus
39.8 kB
# Copyright 2021 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from collections import defaultdict
from typing import TYPE_CHECKING, Dict, Optional, Union
import numpy as np
import requests
from ..modelcard import ModelCard
from ..tokenization_utils import PreTrainedTokenizer
from ..utils import is_torch_available, is_torchaudio_available, logging
from .audio_utils import ffmpeg_read
from .base import ArgumentHandler, ChunkPipeline, infer_framework_load_model
if TYPE_CHECKING:
from pyctcdecode import BeamSearchDecoderCTC
from ..feature_extraction_sequence_utils import SequenceFeatureExtractor
from ..modeling_utils import PreTrainedModel
logger = logging.get_logger(__name__)
if is_torch_available():
import torch
from ..models.auto.modeling_auto import MODEL_FOR_CTC_MAPPING_NAMES, MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING_NAMES
def rescale_stride(stride, ratio):
"""
Rescales the stride values from audio space to tokens/logits space.
(160_000, 16_000, 16_000) -> (2000, 200, 200) for instance.
"""
# Shape is [B, SEQ] for tokens
# [B, SEQ, V] for logits
new_strides = []
for input_n, left, right in stride:
token_n = int(round(input_n * ratio))
left = int(round(left / input_n * token_n))
right = int(round(right / input_n * token_n))
new_stride = (token_n, left, right)
new_strides.append(new_stride)
return new_strides
def chunk_iter(inputs, feature_extractor, chunk_len, stride_left, stride_right, rescale=True, dtype=None):
inputs_len = inputs.shape[0]
step = chunk_len - stride_left - stride_right
for chunk_start_idx in range(0, inputs_len, step):
chunk_end_idx = chunk_start_idx + chunk_len
chunk = inputs[chunk_start_idx:chunk_end_idx]
processed = feature_extractor(chunk, sampling_rate=feature_extractor.sampling_rate, return_tensors="pt")
if dtype is not None:
processed = processed.to(dtype=dtype)
_stride_left = 0 if chunk_start_idx == 0 else stride_left
# all right strides must be full, otherwise it is the last item
is_last = chunk_end_idx > inputs_len if stride_right > 0 else chunk_end_idx >= inputs_len
_stride_right = 0 if is_last else stride_right
chunk_len = chunk.shape[0]
stride = (chunk_len, _stride_left, _stride_right)
if "input_features" in processed:
processed_len = processed["input_features"].shape[-1]
elif "input_values" in processed:
processed_len = processed["input_values"].shape[-1]
if processed_len != chunk.shape[-1] and rescale:
ratio = processed_len / chunk_len
stride = rescale_stride([stride], ratio)[0]
if chunk.shape[0] > _stride_left:
yield {"is_last": is_last, "stride": stride, **processed}
if is_last:
break
def _fast_find_longest_common_sequence(sequence_left, sequence_right):
seq_len_left = len(sequence_left)
seq_len_right = len(sequence_right)
counter = [[0] * (seq_len_right + 1) for _ in range(seq_len_left + 1)]
longest = 0
for i in range(seq_len_left):
for j in range(seq_len_right):
if sequence_left[i] == sequence_right[j]:
previous_counter = counter[i][j] + 1
counter[i + 1][j + 1] = previous_counter
if previous_counter > longest:
longest = previous_counter
counter = np.array(counter)
# we return the idx of the first element of the longest common sequence in the left sequence
index_left = np.argwhere(counter == longest)[-1][0] - longest if longest != 0 else -1
index_right = np.argwhere(counter == longest)[-1][1] - longest if longest != 0 else -1
return index_left, index_right, longest
def _find_longest_common_sequence(sequences, tokenizer):
# TODO Use a faster algorithm this can probably be done in O(n)
# using suffix array.
# It might be tedious to do because of fault tolerance.
# We actually have a really good property which is that the total sequence
# MUST be those subsequences in order.
# Also the algorithm should be more tolerant to errors.
sequence = [tok_id for tok_id in sequences[0][0].tolist() if tok_id not in tokenizer.all_special_ids]
for new_seq in sequences[1:]:
new_sequence = [tok_id for tok_id in new_seq[0].tolist() if tok_id not in tokenizer.all_special_ids]
index = 0
max_ = 0.0
for i in range(1, len(new_sequence) + 1):
# epsilon to favor long perfect matches
eps = i / 10000.0
matches = np.sum(np.array(sequence[-i:]) == np.array(new_sequence[:i]))
matching = matches / i + eps
if matches > 1 and matching > max_:
index = i
max_ = matching
sequence.extend(new_sequence[index:])
return np.array(sequence)
class AutomaticSpeechRecognitionPipeline(ChunkPipeline):
"""
Pipeline that aims at extracting spoken text contained within some audio.
The input can be either a raw waveform or a audio file. In case of the audio file, ffmpeg should be installed for
to support multiple audio formats
Example:
```python
>>> from transformers import pipeline
>>> transcriber = pipeline(model="openai/whisper-base")
>>> transcriber("https://huggingface.co/datasets/Narsil/asr_dummy/resolve/main/1.flac")
{'text': ' He hoped there would be stew for dinner, turnips and carrots and bruised potatoes and fat mutton pieces to be ladled out in thick, peppered flour-fatten sauce.'}
```
Learn more about the basics of using a pipeline in the [pipeline tutorial](../pipeline_tutorial)
Arguments:
model ([`PreTrainedModel`] or [`TFPreTrainedModel`]):
The model that will be used by the pipeline to make predictions. This needs to be a model inheriting from
[`PreTrainedModel`] for PyTorch and [`TFPreTrainedModel`] for TensorFlow.
tokenizer ([`PreTrainedTokenizer`]):
The tokenizer that will be used by the pipeline to encode data for the model. This object inherits from
[`PreTrainedTokenizer`].
feature_extractor ([`SequenceFeatureExtractor`]):
The feature extractor that will be used by the pipeline to encode waveform for the model.
chunk_length_s (`float`, *optional*, defaults to 0):
The input length for in each chunk. If `chunk_length_s = 0` then chunking is disabled (default).
<Tip>
For more information on how to effectively use `chunk_length_s`, please have a look at the [ASR chunking
blog post](https://huggingface.co/blog/asr-chunking).
</Tip>
stride_length_s (`float`, *optional*, defaults to `chunk_length_s / 6`):
The length of stride on the left and right of each chunk. Used only with `chunk_length_s > 0`. This enables
the model to *see* more context and infer letters better than without this context but the pipeline
discards the stride bits at the end to make the final reconstitution as perfect as possible.
<Tip>
For more information on how to effectively use `stride_length_s`, please have a look at the [ASR chunking
blog post](https://huggingface.co/blog/asr-chunking).
</Tip>
framework (`str`, *optional*):
The framework to use, either `"pt"` for PyTorch or `"tf"` for TensorFlow. The specified framework must be
installed. If no framework is specified, will default to the one currently installed. If no framework is
specified and both frameworks are installed, will default to the framework of the `model`, or to PyTorch if
no model is provided.
device (Union[`int`, `torch.device`], *optional*):
Device ordinal for CPU/GPU supports. Setting this to `None` will leverage CPU, a positive will run the
model on the associated CUDA device id.
decoder (`pyctcdecode.BeamSearchDecoderCTC`, *optional*):
[PyCTCDecode's
BeamSearchDecoderCTC](https://github.com/kensho-technologies/pyctcdecode/blob/2fd33dc37c4111417e08d89ccd23d28e9b308d19/pyctcdecode/decoder.py#L180)
can be passed for language model boosted decoding. See [`Wav2Vec2ProcessorWithLM`] for more information.
"""
def __init__(
self,
model: "PreTrainedModel",
feature_extractor: Union["SequenceFeatureExtractor", str] = None,
tokenizer: Optional[PreTrainedTokenizer] = None,
decoder: Optional[Union["BeamSearchDecoderCTC", str]] = None,
modelcard: Optional[ModelCard] = None,
framework: Optional[str] = None,
task: str = "",
args_parser: ArgumentHandler = None,
device: Union[int, "torch.device"] = None,
torch_dtype: Optional[Union[str, "torch.dtype"]] = None,
binary_output: bool = False,
**kwargs,
):
if framework is None:
framework, model = infer_framework_load_model(model, config=model.config)
self.task = task
self.model = model
self.tokenizer = tokenizer
self.feature_extractor = feature_extractor
self.modelcard = modelcard
self.framework = framework
# `accelerate` device map
hf_device_map = getattr(self.model, "hf_device_map", None)
if hf_device_map is not None and device is not None:
raise ValueError(
"The model has been loaded with `accelerate` and therefore cannot be moved to a specific device. Please "
"discard the `device` argument when creating your pipeline object."
)
if self.framework == "tf":
raise ValueError("The AutomaticSpeechRecognitionPipeline is only available in PyTorch.")
# We shouldn't call `model.to()` for models loaded with accelerate
if device is not None and not (isinstance(device, int) and device < 0):
self.model.to(device)
if device is None:
if hf_device_map is not None:
# Take the first device used by `accelerate`.
device = next(iter(hf_device_map.values()))
else:
device = -1
if is_torch_available() and self.framework == "pt":
if isinstance(device, torch.device):
self.device = device
elif isinstance(device, str):
self.device = torch.device(device)
elif device < 0:
self.device = torch.device("cpu")
else:
self.device = torch.device(f"cuda:{device}")
else:
self.device = device if device is not None else -1
self.torch_dtype = torch_dtype
self.binary_output = binary_output
# Update config and generation_config with task specific parameters
task_specific_params = self.model.config.task_specific_params
if task_specific_params is not None and task in task_specific_params:
self.model.config.update(task_specific_params.get(task))
if self.model.can_generate():
self.model.generation_config.update(**task_specific_params.get(task))
self.call_count = 0
self._batch_size = kwargs.pop("batch_size", None)
self._num_workers = kwargs.pop("num_workers", None)
# set the model type so we can check we have the right pre- and post-processing parameters
if self.model.config.model_type == "whisper":
self.type = "seq2seq_whisper"
elif self.model.__class__.__name__ in MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING_NAMES.values():
self.type = "seq2seq"
elif (
feature_extractor._processor_class
and feature_extractor._processor_class.endswith("WithLM")
and decoder is not None
):
self.decoder = decoder
self.type = "ctc_with_lm"
else:
self.type = "ctc"
self._preprocess_params, self._forward_params, self._postprocess_params = self._sanitize_parameters(**kwargs)
mapping = MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING_NAMES.copy()
mapping.update(MODEL_FOR_CTC_MAPPING_NAMES)
self.check_model_type(mapping)
def __call__(
self,
inputs: Union[np.ndarray, bytes, str],
**kwargs,
):
"""
Transcribe the audio sequence(s) given as inputs to text. See the [`AutomaticSpeechRecognitionPipeline`]
documentation for more information.
Args:
inputs (`np.ndarray` or `bytes` or `str` or `dict`):
The inputs is either :
- `str` that is either the filename of a local audio file, or a public URL address to download the
audio file. The file will be read at the correct sampling rate to get the waveform using
*ffmpeg*. This requires *ffmpeg* to be installed on the system.
- `bytes` it is supposed to be the content of an audio file and is interpreted by *ffmpeg* in the
same way.
- (`np.ndarray` of shape (n, ) of type `np.float32` or `np.float64`)
Raw audio at the correct sampling rate (no further check will be done)
- `dict` form can be used to pass raw audio sampled at arbitrary `sampling_rate` and let this
pipeline do the resampling. The dict must be in the format `{"sampling_rate": int, "raw":
np.array}` with optionally a `"stride": (left: int, right: int)` than can ask the pipeline to
treat the first `left` samples and last `right` samples to be ignored in decoding (but used at
inference to provide more context to the model). Only use `stride` with CTC models.
return_timestamps (*optional*, `str` or `bool`):
Only available for pure CTC models (Wav2Vec2, HuBERT, etc) and the Whisper model. Not available for
other sequence-to-sequence models.
For CTC models, timestamps can take one of two formats:
- `"char"`: the pipeline will return timestamps along the text for every character in the text. For
instance, if you get `[{"text": "h", "timestamp": (0.5, 0.6)}, {"text": "i", "timestamp": (0.7,
0.9)}]`, then it means the model predicts that the letter "h" was spoken after `0.5` and before
`0.6` seconds.
- `"word"`: the pipeline will return timestamps along the text for every word in the text. For
instance, if you get `[{"text": "hi ", "timestamp": (0.5, 0.9)}, {"text": "there", "timestamp":
(1.0, 1.5)}]`, then it means the model predicts that the word "hi" was spoken after `0.5` and
before `0.9` seconds.
For the Whisper model, timestamps can take one of two formats:
- `"word"`: same as above for word-level CTC timestamps. Word-level timestamps are predicted
through the *dynamic-time warping (DTW)* algorithm, an approximation to word-level timestamps
by inspecting the cross-attention weights.
- `True`: the pipeline will return timestamps along the text for *segments* of words in the text.
For instance, if you get `[{"text": " Hi there!", "timestamp": (0.5, 1.5)}]`, then it means the
model predicts that the segment "Hi there!" was spoken after `0.5` and before `1.5` seconds.
Note that a segment of text refers to a sequence of one or more words, rather than individual
words as with word-level timestamps.
generate_kwargs (`dict`, *optional*):
The dictionary of ad-hoc parametrization of `generate_config` to be used for the generation call. For a
complete overview of generate, check the [following
guide](https://huggingface.co/docs/transformers/en/main_classes/text_generation).
max_new_tokens (`int`, *optional*):
The maximum numbers of tokens to generate, ignoring the number of tokens in the prompt.
Return:
`Dict`: A dictionary with the following keys:
- **text** (`str`): The recognized text.
- **chunks** (*optional(, `List[Dict]`)
When using `return_timestamps`, the `chunks` will become a list containing all the various text
chunks identified by the model, *e.g.* `[{"text": "hi ", "timestamp": (0.5, 0.9)}, {"text":
"there", "timestamp": (1.0, 1.5)}]`. The original full text can roughly be recovered by doing
`"".join(chunk["text"] for chunk in output["chunks"])`.
"""
return super().__call__(inputs, **kwargs)
def _sanitize_parameters(
self,
chunk_length_s=None,
stride_length_s=None,
ignore_warning=None,
decoder_kwargs=None,
return_timestamps=None,
return_language=None,
generate_kwargs=None,
max_new_tokens=None,
):
# No parameters on this pipeline right now
preprocess_params = {}
if chunk_length_s is not None:
if self.type == "seq2seq" and not ignore_warning:
logger.warning(
"Using `chunk_length_s` is very experimental with seq2seq models. The results will not necessarily"
" be entirely accurate and will have caveats. More information:"
" https://github.com/huggingface/transformers/pull/20104. Ignore this warning with pipeline(...,"
" ignore_warning=True)"
)
preprocess_params["chunk_length_s"] = chunk_length_s
if stride_length_s is not None:
preprocess_params["stride_length_s"] = stride_length_s
forward_params = defaultdict(dict)
if max_new_tokens is not None:
forward_params["generate_kwargs"]["max_new_tokens"] = max_new_tokens
if generate_kwargs is not None:
if max_new_tokens is not None and "max_new_tokens" in generate_kwargs:
raise ValueError(
"`max_new_tokens` is defined both as an argument and inside `generate_kwargs` argument, please use"
" only 1 version"
)
forward_params["generate_kwargs"].update(generate_kwargs)
postprocess_params = {}
if decoder_kwargs is not None:
postprocess_params["decoder_kwargs"] = decoder_kwargs
if return_timestamps is not None:
# Check whether we have a valid setting for return_timestamps and throw an error before we perform a forward pass
if self.type == "seq2seq" and return_timestamps:
raise ValueError("We cannot return_timestamps yet on non-CTC models apart from Whisper!")
if self.type == "ctc_with_lm" and return_timestamps != "word":
raise ValueError("CTC with LM can only predict word level timestamps, set `return_timestamps='word'`")
if self.type == "ctc" and return_timestamps not in ["char", "word"]:
raise ValueError(
"CTC can either predict character level timestamps, or word level timestamps."
"Set `return_timestamps='char'` or `return_timestamps='word'` as required."
)
if self.type == "seq2seq_whisper" and return_timestamps == "char":
raise ValueError(
"Whisper cannot return `char` timestamps, only word level or segment level timestamps. "
"Use `return_timestamps='word'` or `return_timestamps=True` respectively."
)
forward_params["return_timestamps"] = return_timestamps
postprocess_params["return_timestamps"] = return_timestamps
if return_language is not None:
if self.type != "seq2seq_whisper":
raise ValueError("Only Whisper can return language for now.")
postprocess_params["return_language"] = return_language
return preprocess_params, forward_params, postprocess_params
def preprocess(self, inputs, chunk_length_s=0, stride_length_s=None):
if isinstance(inputs, str):
if inputs.startswith("http://") or inputs.startswith("https://"):
# We need to actually check for a real protocol, otherwise it's impossible to use a local file
# like http_huggingface_co.png
inputs = requests.get(inputs).content
else:
with open(inputs, "rb") as f:
inputs = f.read()
if isinstance(inputs, bytes):
inputs = ffmpeg_read(inputs, self.feature_extractor.sampling_rate)
stride = None
extra = {}
if isinstance(inputs, dict):
stride = inputs.pop("stride", None)
# Accepting `"array"` which is the key defined in `datasets` for
# better integration
if not ("sampling_rate" in inputs and ("raw" in inputs or "array" in inputs)):
raise ValueError(
"When passing a dictionary to AutomaticSpeechRecognitionPipeline, the dict needs to contain a "
'"raw" key containing the numpy array representing the audio and a "sampling_rate" key, '
"containing the sampling_rate associated with that array"
)
_inputs = inputs.pop("raw", None)
if _inputs is None:
# Remove path which will not be used from `datasets`.
inputs.pop("path", None)
_inputs = inputs.pop("array", None)
in_sampling_rate = inputs.pop("sampling_rate")
extra = inputs
inputs = _inputs
if in_sampling_rate != self.feature_extractor.sampling_rate:
if is_torchaudio_available():
from torchaudio import functional as F
else:
raise ImportError(
"torchaudio is required to resample audio samples in AutomaticSpeechRecognitionPipeline. "
"The torchaudio package can be installed through: `pip install torchaudio`."
)
inputs = F.resample(
torch.from_numpy(inputs), in_sampling_rate, self.feature_extractor.sampling_rate
).numpy()
ratio = self.feature_extractor.sampling_rate / in_sampling_rate
else:
ratio = 1
if stride is not None:
if stride[0] + stride[1] > inputs.shape[0]:
raise ValueError("Stride is too large for input")
# Stride needs to get the chunk length here, it's going to get
# swallowed by the `feature_extractor` later, and then batching
# can add extra data in the inputs, so we need to keep track
# of the original length in the stride so we can cut properly.
stride = (inputs.shape[0], int(round(stride[0] * ratio)), int(round(stride[1] * ratio)))
if not isinstance(inputs, np.ndarray):
raise ValueError(f"We expect a numpy ndarray as input, got `{type(inputs)}`")
if len(inputs.shape) != 1:
raise ValueError("We expect a single channel audio input for AutomaticSpeechRecognitionPipeline")
if chunk_length_s:
if stride_length_s is None:
stride_length_s = chunk_length_s / 6
if isinstance(stride_length_s, (int, float)):
stride_length_s = [stride_length_s, stride_length_s]
# XXX: Carefuly, this variable will not exist in `seq2seq` setting.
# Currently chunking is not possible at this level for `seq2seq` so
# it's ok.
align_to = getattr(self.model.config, "inputs_to_logits_ratio", 1)
chunk_len = int(round(chunk_length_s * self.feature_extractor.sampling_rate / align_to) * align_to)
stride_left = int(round(stride_length_s[0] * self.feature_extractor.sampling_rate / align_to) * align_to)
stride_right = int(round(stride_length_s[1] * self.feature_extractor.sampling_rate / align_to) * align_to)
if chunk_len < stride_left + stride_right:
raise ValueError("Chunk length must be superior to stride length")
rescale = self.type != "seq2seq_whisper"
# make sure that
for item in chunk_iter(
inputs, self.feature_extractor, chunk_len, stride_left, stride_right, rescale, self.torch_dtype
):
yield item
else:
processed = self.feature_extractor(
inputs, sampling_rate=self.feature_extractor.sampling_rate, return_tensors="pt"
)
if self.torch_dtype is not None:
processed = processed.to(dtype=self.torch_dtype)
if stride is not None:
if self.type == "seq2seq":
raise ValueError("Stride is only usable with CTC models, try removing it !")
processed["stride"] = stride
yield {"is_last": True, **processed, **extra}
def _forward(self, model_inputs, return_timestamps=False, generate_kwargs=None):
if generate_kwargs is None:
generate_kwargs = {}
attention_mask = model_inputs.pop("attention_mask", None)
stride = model_inputs.pop("stride", None)
is_last = model_inputs.pop("is_last")
if self.type in {"seq2seq", "seq2seq_whisper"}:
encoder = self.model.get_encoder()
# Consume values so we can let extra information flow freely through
# the pipeline (important for `partial` in microphone)
if "input_features" in model_inputs:
inputs = model_inputs.pop("input_features")
elif "input_values" in model_inputs:
inputs = model_inputs.pop("input_values")
else:
raise ValueError(
"Seq2Seq speech recognition model requires either a "
f"`input_features` or `input_values` key, but only has {model_inputs.keys()}"
)
# custom processing for Whisper timestamps and word-level timestamps
if return_timestamps and self.type == "seq2seq_whisper":
generate_kwargs["return_timestamps"] = return_timestamps
if return_timestamps == "word":
generate_kwargs["return_token_timestamps"] = True
if stride is not None:
generate_kwargs["num_frames"] = stride[0] // self.feature_extractor.hop_length
tokens = self.model.generate(
encoder_outputs=encoder(inputs, attention_mask=attention_mask),
attention_mask=attention_mask,
**generate_kwargs,
)
if return_timestamps == "word" and self.type == "seq2seq_whisper":
out = {"tokens": tokens["sequences"], "token_timestamps": tokens["token_timestamps"]}
else:
out = {"tokens": tokens}
if self.type == "seq2seq_whisper":
if stride is not None:
out["stride"] = stride
else:
input_values = model_inputs.pop("input_values")
outputs = self.model(input_values=input_values, attention_mask=attention_mask)
logits = outputs.logits
if self.type == "ctc_with_lm":
out = {"logits": logits}
else:
out = {"tokens": logits.argmax(dim=-1)}
if stride is not None:
# Send stride to `postprocess`.
# it needs to be handled there where
# the pieces are to be concatenated.
ratio = 1 / self.model.config.inputs_to_logits_ratio
if isinstance(stride, tuple):
out["stride"] = rescale_stride([stride], ratio)[0]
else:
out["stride"] = rescale_stride(stride, ratio)
# Leftover
extra = model_inputs
return {"is_last": is_last, **out, **extra}
def postprocess(
self, model_outputs, decoder_kwargs: Optional[Dict] = None, return_timestamps=None, return_language=None
):
# Optional return types
optional = {}
final_items = []
key = "logits" if self.type == "ctc_with_lm" else "tokens"
stride = None
for outputs in model_outputs:
items = outputs[key].numpy()
stride = outputs.get("stride", None)
if stride is not None and self.type in {"ctc", "ctc_with_lm"}:
total_n, left, right = stride
# Total_n might be < logits.shape[1]
# because of padding, that's why
# we need to reconstruct this information
# This won't work with left padding (which doesn't exist right now)
right_n = total_n - right
items = items[:, left:right_n]
final_items.append(items)
if stride and self.type == "seq2seq":
items = _find_longest_common_sequence(final_items, self.tokenizer)
elif self.type == "seq2seq_whisper":
time_precision = self.feature_extractor.chunk_length / self.model.config.max_source_positions
# Send the chunking back to seconds, it's easier to handle in whisper
sampling_rate = self.feature_extractor.sampling_rate
for output in model_outputs:
if "stride" in output:
chunk_len, stride_left, stride_right = output["stride"]
# Go back in seconds
chunk_len /= sampling_rate
stride_left /= sampling_rate
stride_right /= sampling_rate
output["stride"] = chunk_len, stride_left, stride_right
text, optional = self.tokenizer._decode_asr(
model_outputs,
return_timestamps=return_timestamps,
return_language=return_language,
time_precision=time_precision,
)
else:
items = np.concatenate(final_items, axis=1)
items = items.squeeze(0)
if self.type == "ctc_with_lm":
if decoder_kwargs is None:
decoder_kwargs = {}
beams = self.decoder.decode_beams(items, **decoder_kwargs)
text = beams[0][0]
if return_timestamps:
# Simply cast from pyctcdecode format to wav2vec2 format to leverage
# pre-existing code later
chunk_offset = beams[0][2]
offsets = []
for word, (start_offset, end_offset) in chunk_offset:
offsets.append({"word": word, "start_offset": start_offset, "end_offset": end_offset})
elif self.type != "seq2seq_whisper":
skip_special_tokens = self.type != "ctc"
text = self.tokenizer.decode(items, skip_special_tokens=skip_special_tokens)
if return_timestamps:
offsets = self.tokenizer.decode(
items, skip_special_tokens=skip_special_tokens, output_char_offsets=True
)["char_offsets"]
if return_timestamps == "word":
offsets = self.tokenizer._get_word_offsets(offsets, self.tokenizer.replace_word_delimiter_char)
if return_timestamps and self.type not in {"seq2seq", "seq2seq_whisper"}:
chunks = []
for item in offsets:
start = item["start_offset"] * self.model.config.inputs_to_logits_ratio
start /= self.feature_extractor.sampling_rate
stop = item["end_offset"] * self.model.config.inputs_to_logits_ratio
stop /= self.feature_extractor.sampling_rate
chunks.append({"text": item[return_timestamps], "timestamp": (start, stop)})
optional["chunks"] = chunks
extra = defaultdict(list)
for output in model_outputs:
output.pop("tokens", None)
output.pop("logits", None)
output.pop("is_last", None)
output.pop("stride", None)
output.pop("token_timestamps", None)
for k, v in output.items():
extra[k].append(v)
return {"text": text, **optional, **extra}
def _find_timestamp_sequence(sequences, tokenizer, feature_extractor, max_source_positions):
"""
Computes the final sequences by merging the end of the nth sequence with the beginning of the n+1th sequence. Since
`WhisperForConditionalGeneration` produces the timestamps pairwise, we filter the consecutive timestamps and only
iterate over them. We keep track of the `time` which indicates the actual starting time of the chunk that is
processed. We need to make sure to offset the timestamps tokens by the `time` in order for the tokenizer to
properly compute the final `offset`.
"""
# index of the first timestamp token
timestamp_begin = tokenizer.convert_tokens_to_ids("<|notimestamps|>") + 1
items = []
# approximation of the token to time ratio : ~0.2seconds
time_precision = feature_extractor.chunk_length / max_source_positions
time = 0
for seq_idx, item in enumerate(sequences):
sequence, stride = item
if isinstance(sequence, list):
sequence = np.array(sequence)
chunk_len, stride_left, stride_right = stride
sequence = sequence.squeeze(0)
# get rid of the `forced_decoder_idx` that are use to parametrize the generation
begin_idx = np.where(sequence == timestamp_begin)[0][0] if timestamp_begin in sequence else 0
sequence = sequence[begin_idx:]
timestamp_tokens = sequence >= timestamp_begin
if seq_idx != 0 and sum(timestamp_tokens) > 0:
consecutive = np.where(timestamp_tokens[:-1] & timestamp_tokens[1:])[0] + 1
last_timestamp = np.where(timestamp_tokens)[0][-1]
consecutive = np.append(consecutive, last_timestamp) if last_timestamp not in consecutive else consecutive
time -= stride_left + stride_right
offset = int((time / feature_extractor.sampling_rate) / time_precision)
overlap_time = int((stride_left / feature_extractor.sampling_rate) / time_precision)
# relevant timestamps are in the overlapping part
relevant_timestamp = np.where(sequence[consecutive] >= timestamp_begin + overlap_time)[0]
if relevant_timestamp.shape[0] > 0:
relevant_timestamp = (
consecutive[relevant_timestamp[0] - 1] if relevant_timestamp[0] > 0 else consecutive[0]
)
# if a big stride is used, we need to check some of the previous items for the best overlap
best_match = 0
sliced_sequence = []
for idx, previous_sequence in enumerate(reversed(items)):
previous_tokens = previous_sequence[1:-1]
if previous_sequence[0] < (timestamp_begin + offset - overlap_time) and idx != 0:
break # the previous sequence is too far in the past
if len(previous_tokens) > 0:
# find the longest common sequence between the overlapping parts
index_left, index_right, match_length = _fast_find_longest_common_sequence(
sequence[1:relevant_timestamp], previous_tokens
)
# don't do anything if only 1 token was matched
if match_length > 1 and match_length > best_match:
best_match = match_length
best_idx = idx
end_of_curr_sequence_idx = (
np.where(sequence[index_left + 1 :] >= timestamp_begin)[0][0] + 1
)
end_of_curr_sequence_idx = end_of_curr_sequence_idx + 1 + index_left
# if all the tokens are matched, suffix
if index_left == 0 and match_length == len(previous_tokens):
sliced_sequence = np.insert(
sequence[index_left + 1 : end_of_curr_sequence_idx], 0, previous_sequence[0]
)
sliced_sequence[-1] = previous_sequence[-1]
# if part of the previous sequence is not taken
elif index_left >= 0:
sliced_sequence = sequence[index_left + 1 : end_of_curr_sequence_idx]
# let's insert the missing part of the previous sequence
previous_slice = (
previous_sequence[: index_right + 1] if index_right > 0 else [previous_sequence[0]]
)
sliced_sequence = np.insert(sliced_sequence, 0, previous_slice)
sliced_sequence[-1] += offset
if len(sliced_sequence) > 0:
items[len(items) - best_idx - 1] = sliced_sequence
items = items[: len(items) - best_idx]
sequence = sequence[end_of_curr_sequence_idx:]
# sequence might have changed
timestamp_tokens = sequence >= timestamp_begin
consecutive = np.where(timestamp_tokens[:-1] & timestamp_tokens[1:])[0] + 1
if sum(timestamp_tokens) > 0:
last_timestamp = np.where(timestamp_tokens)[0][-1]
consecutive = (
np.append(consecutive, last_timestamp + 1) if last_timestamp not in consecutive else consecutive
)
if len(consecutive) > 0:
last_slice = 0
for current_slice in consecutive:
actual_offset = items[-1][-1] if seq_idx != 0 or last_slice != 0 else sequence[0]
sliced_tokens = sequence[last_slice:current_slice]
duration = sliced_tokens[-1] - sliced_tokens[0]
sliced_tokens[0] = actual_offset
sliced_tokens[-1] = actual_offset + duration
items.append(sliced_tokens)
last_slice = current_slice
time += chunk_len
result = []
for i in range(len(items)):
result += items[i].tolist()
return result