Cascade-Edge / app.py
VSPAN's picture
Update app.py
35093d5 verified
import gradio as gr
import edge_tts
import asyncio
import tempfile
import re
import emoji
# Функция для очистки текста от нежелательных символов и эмодзи
def clean_text(text):
# Удаление указанных символов
text = re.sub(r'[*_~><]', '', text)
# Удаление эмодзи
text = emoji.replace_emoji(text, replace='')
return text
# Get all available voices
async def get_voices():
voices = await edge_tts.list_voices()
return {f"{v['ShortName']} - {v['Locale']} ({v['Gender']})": v['ShortName'] for v in voices}
# Text-to-speech function
async def text_to_speech(text, voice, rate, pitch):
if not text.strip():
return None, gr.Warning("Please enter text to convert.")
if not voice:
return None, gr.Warning("Please select a voice.")
# Очистка текста
text = clean_text(text)
voice_short_name = voice.split(" - ")[0]
rate_str = f"{rate:+d}%"
pitch_str = f"{pitch:+d}Hz"
communicate = edge_tts.Communicate(text, voice_short_name, rate=rate_str, pitch=pitch_str)
with tempfile.NamedTemporaryFile(delete=False, suffix=".mp3") as tmp_file:
tmp_path = tmp_file.name
try:
await communicate.save(tmp_path)
except Exception as e:
return None, gr.Warning(f"An error occurred during text-to-speech conversion: {str(e)}")
return tmp_path, None
# Gradio interface function
def tts_interface(text, voice, rate, pitch):
audio, warning = asyncio.run(text_to_speech(text, voice, rate, pitch))
return audio, warning
# Create Gradio application
async def create_demo():
voices = await get_voices()
description = """
"""
demo = gr.Interface(
fn=tts_interface,
inputs=[
gr.Textbox(label="Input Text", lines=5),
gr.Dropdown(choices=[""] + list(voices.keys()), label="Select Voice", value=""),
gr.Slider(minimum=-50, maximum=50, value=0, label="Speech Rate Adjustment (%)", step=1),
gr.Slider(minimum=-20, maximum=20, value=0, label="Pitch Adjustment (Hz)", step=1)
],
outputs=[
gr.Audio(label="Generated Audio", type="filepath"),
gr.Markdown(label="Warning", visible=False)
],
title="Edge TTS Text-to-Speech",
description=description,
article="",
analytics_enabled=False,
allow_flagging="manual"
)
return demo
# Run the application
if __name__ == "__main__":
demo = asyncio.run(create_demo())
demo.launch()