add audio MAE
Browse files- __pycache__/app.cpython-311.pyc +0 -0
- __pycache__/classpred.cpython-311.pyc +0 -0
- app.py +4 -2
- classpred.py +44 -0
__pycache__/app.cpython-311.pyc
CHANGED
Binary files a/__pycache__/app.cpython-311.pyc and b/__pycache__/app.cpython-311.pyc differ
|
|
__pycache__/classpred.cpython-311.pyc
ADDED
Binary file (3.47 kB). View file
|
|
app.py
CHANGED
@@ -9,7 +9,9 @@ from model import BirdAST
|
|
9 |
import torch
|
10 |
import librosa
|
11 |
import noisereduce as nr
|
|
|
12 |
import pandas as pd
|
|
|
13 |
import torch.nn.functional as F
|
14 |
import random
|
15 |
from torchaudio.compliance import kaldi
|
@@ -56,7 +58,7 @@ def predict(audio, start, end):
|
|
56 |
sr, x = audio
|
57 |
|
58 |
x = np.array(x, dtype=np.float32)/32768.0
|
59 |
-
x = x[start*sr : end*sr]
|
60 |
res = preprocess_for_inference(x, sr)
|
61 |
|
62 |
if start >= end:
|
@@ -72,7 +74,7 @@ def predict(audio, start, end):
|
|
72 |
fig2 = plot_wave(sr, x)
|
73 |
|
74 |
|
75 |
-
return
|
76 |
|
77 |
def download_model(url, model_path):
|
78 |
if not os.path.exists(model_path):
|
|
|
9 |
import torch
|
10 |
import librosa
|
11 |
import noisereduce as nr
|
12 |
+
import timm
|
13 |
import pandas as pd
|
14 |
+
from classpred import predict_class
|
15 |
import torch.nn.functional as F
|
16 |
import random
|
17 |
from torchaudio.compliance import kaldi
|
|
|
58 |
sr, x = audio
|
59 |
|
60 |
x = np.array(x, dtype=np.float32)/32768.0
|
61 |
+
x = x[int(start*sr) : int(end*sr)]
|
62 |
res = preprocess_for_inference(x, sr)
|
63 |
|
64 |
if start >= end:
|
|
|
74 |
fig2 = plot_wave(sr, x)
|
75 |
|
76 |
|
77 |
+
return predict_class(x, sr, start, end), res, fig1, fig2
|
78 |
|
79 |
def download_model(url, model_path):
|
80 |
if not os.path.exists(model_path):
|
classpred.py
ADDED
@@ -0,0 +1,44 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import timm
|
2 |
+
import json
|
3 |
+
import torch
|
4 |
+
from torchaudio.functional import resample
|
5 |
+
import numpy as np
|
6 |
+
from torchaudio.compliance import kaldi
|
7 |
+
import torch.nn.functional as F
|
8 |
+
import requests
|
9 |
+
|
10 |
+
TAG = "gaunernst/vit_base_patch16_1024_128.audiomae_as2m_ft_as20k"
|
11 |
+
MODEL = timm.create_model(f"hf_hub:{TAG}", pretrained=True).eval()
|
12 |
+
|
13 |
+
LABEL_URL = "https://huggingface.co/datasets/huggingface/label-files/raw/main/audioset-id2label.json"
|
14 |
+
AUDIOSET_LABELS = list(json.loads(requests.get(LABEL_URL).content).values())
|
15 |
+
|
16 |
+
SAMPLING_RATE = 16_000
|
17 |
+
MEAN = -4.2677393
|
18 |
+
STD = 4.5689974
|
19 |
+
|
20 |
+
def preprocess(x: torch.Tensor):
|
21 |
+
x = x - x.mean()
|
22 |
+
melspec = kaldi.fbank(x.unsqueeze(0), htk_compat=True, window_type="hanning", num_mel_bins=128)
|
23 |
+
if melspec.shape[0] < 1024:
|
24 |
+
melspec = F.pad(melspec, (0, 0, 0, 1024 - melspec.shape[0]))
|
25 |
+
else:
|
26 |
+
melspec = melspec[:1024]
|
27 |
+
melspec = (melspec - MEAN) / (STD * 2)
|
28 |
+
return melspec
|
29 |
+
|
30 |
+
def predict_class(x, sr, start, end):
|
31 |
+
x = torch.from_numpy(x) / (1 << 15)
|
32 |
+
if x.ndim > 1:
|
33 |
+
x = x.mean(-1)
|
34 |
+
assert x.ndim == 1
|
35 |
+
x = resample(x[int(start * sr) : int(end * sr)], sr, SAMPLING_RATE)
|
36 |
+
x = preprocess(x)
|
37 |
+
|
38 |
+
with torch.inference_mode():
|
39 |
+
logits = MODEL(x.view(1, 1, 1024, 128)).squeeze(0)
|
40 |
+
|
41 |
+
topk_probs, topk_classes = logits.sigmoid().topk(10)
|
42 |
+
preds = [[AUDIOSET_LABELS[cls], prob.item() * 100] for cls, prob in zip(topk_classes, topk_probs)]
|
43 |
+
|
44 |
+
return preds
|