voj / app.py
amroa's picture
averaging over 5 folds
faad4ba
raw
history blame
6.59 kB
import json
import gradio as gr
import matplotlib.pyplot as plt
import numpy as np
import os
import requests
from config import Config
from model import BirdAST
import torch
import librosa
import noisereduce as nr
import pandas as pd
import torch.nn.functional as F
import random
from torchaudio.compliance import kaldi
from torchaudio.functional import resample
from transformers import ASTFeatureExtractor
#TAG = "gaunernst/vit_base_patch16_1024_128.audiomae_as2m_ft_as20k"
#MODEL = timm.create_model(f"hf_hub:{TAG}", pretrained=True).eval()
#LABEL_URL = "https://huggingface.co/datasets/huggingface/label-files/raw/main/audioset-id2label.json"
#AUDIOSET_LABELS = list(json.loads(requests.get(LABEL_URL).content).values())
FEATURE_EXTRACTOR = ASTFeatureExtractor()
def plot_mel(sr, x):
mel_spec = librosa.feature.melspectrogram(y=x, sr=sr, n_mels=224, fmax=10000)
mel_spec_db = librosa.power_to_db(mel_spec, ref=np.max)
mel_spec_db = (mel_spec_db - mel_spec_db.min()) / (mel_spec_db.max() - mel_spec_db.min()) # normalize spectrogram to [0,1]
mel_spec_db = np.stack([mel_spec_db, mel_spec_db, mel_spec_db], axis=-1) # Convert to 3-channel
fig, ax = plt.subplots(nrows=1, ncols=1, sharex=True)
librosa.display.specshow(mel_spec_db[:, :, 0], sr=sr, x_axis='time', y_axis='mel', fmin = 0, fmax=10000, ax = ax)
return fig
def plot_wave(sr, x):
ry = nr.reduce_noise(y=x, sr=sr)
fig, ax = plt.subplots(2, 1, figsize=(12, 8))
# Plot the original waveform
librosa.display.waveshow(x, sr=sr, ax=ax[0])
ax[0].set(title='Original Waveform')
ax[0].set_xlabel('Time (s)')
ax[0].set_ylabel('Amplitude')
# Plot the noise-reduced waveform
librosa.display.waveshow(ry, sr=sr, ax=ax[1])
ax[1].set(title='Noise Reduced Waveform')
ax[1].set_xlabel('Time (s)')
ax[1].set_ylabel('Amplitude')
plt.tight_layout()
return fig
def predict(audio, start, end):
sr, x = audio
x = np.array(x, dtype=np.float64)/32768.0
res = preprocess_for_inference(x, sr)
if start >= end:
raise gr.Error(f"`start` ({start}) must be smaller than end ({end}s)")
if x.shape[0] < start * sr:
raise gr.Error(f"`start` ({start}) must be smaller than audio duration ({x.shape[0] / sr:.0f}s)")
if x.shape[0] > end * sr:
end = x.shape[0]/(1.0*sr)
fig1 = plot_mel(sr, x)
fig2 = plot_wave(sr, x)
return res, res, fig1, fig2
def download_model(url, model_path):
if not os.path.exists(model_path):
response = requests.get(url)
response.raise_for_status() # Ensure the request was successful
with open(model_path, 'wb') as f:
f.write(response.content)
# Model URL and path
model_urls = [f'https://huggingface.co/shiyi-li/BirdAST/resolve/main/BirdAST_Baseline_5folds_fold_{i}.pth' for i in range(5)]
model_paths = [f'BirdAST_Baseline_5folds_fold_{i}.pth' for i in range(5)]
for (model_url, model_path) in zip(model_urls, model_paths):
download_model(model_url, model_path)
# Load the model (assumes you have the model architecture defined)
eval_models = [BirdAST(Config().backbone_name, Config().n_classes, n_mlp_layers=1, activation='silu') for i in range(5)]
state_dicts = [torch.load(f'BirdAST_Baseline_5folds_fold_{i}.pth', map_location='cpu') for i in range(5)]
for idx, sd in enumerate(state_dicts):
eval_models[idx].load_state_dict(sd)
# Set to evaluation mode
for i in range(5):
eval_models[i].eval()
# Load the species mapping
# label_mapping = pd.read_csv('label_mapping.csv')
label_mapping = pd.read_csv('BirdAST_Baseline_5folds_label_map.csv')
species_id_to_name = {row['species_id']: row['scientific_name'] for index, row in label_mapping.iterrows()}
def preprocess_for_inference(audio_arr, sr):
spec = FEATURE_EXTRACTOR(audio_arr, sampling_rate=sr, padding="max_length", return_tensors="pt")
input_values = spec['input_values'] # Get the input values prepared for model input
# Initialize a list to store predictions from all models
model_outputs = []
with torch.no_grad():
# Accumulate predictions from each model
for model in eval_models:
output = model(input_values)
predict_score = F.softmax(output['logits'], dim=1)
model_outputs.append(predict_score)
# Average the predictions across all models
avg_predictions = torch.mean(torch.stack(model_outputs), dim=0)
# Get the top 10 predictions based on the average prediction scores
topk_values, topk_indices = torch.topk(avg_predictions, 10, dim=1)
# Initialize results list to store the species names and their associated probabilities
results = []
for idx, scores in zip(topk_indices[0], topk_values[0]):
species_name = species_id_to_name[idx.item()]
probability = scores.item()
results.append([species_name, probability])
return results
DESCRIPTION = """
Bird audio classification using SOTA Voice of Jungle Technology.
"""
css = """
.number-input {
height: 100%;
padding-bottom: 60px; /* Adust the value as needed for more or less space */
}
.full-height {
height: 100%;
}
.column-container {
height: 100%;
}
"""
with gr.Blocks(css = css) as demo:
gr.Markdown("# Bird Species Audio Classification")
gr.Markdown(DESCRIPTION)
with gr.Row():
with gr.Column(elem_classes="column-container"):
start_time_input = gr.Number(label="Start Time", value=0, elem_classes="number-input full-height")
end_time_input = gr.Number(label="End Time", value=1, elem_classes="number-input full-height")
with gr.Column():
audio_input = gr.Audio(label="Input Audio", elem_classes="full-height")
with gr.Row():
raw_class_output = gr.Dataframe(headers=["class", "score"], row_count=10, label="Class Prediction")
species_output = gr.Dataframe(headers=["class", "score"], row_count=10, label="Species Prediction")
with gr.Row():
waveform_output = gr.Plot(label="Waveform")
spectrogram_output = gr.Plot(label="Spectrogram")
gr.Examples(
examples=[
["312_Cissopis_leverinia_1.wav", 0, 5],
["1094_Pionus_fuscus_2.wav", 0, 10],
],
inputs=[audio_input, start_time_input, end_time_input]
)
gr.Button("Predict").click(predict, [audio_input, start_time_input, end_time_input], [raw_class_output, species_output, waveform_output, spectrogram_output])
demo.launch(share = True)