|
import ast, sys, json, torch |
|
from transformers import AutoModelForCausalLM, AutoTokenizer, GenerationConfig |
|
from ..tools import run_detection, run_segmentation, FUNCTION_SCHEMA |
|
|
|
TOOLS = {"run_detection": run_detection, "run_segmentation": run_segmentation} |
|
|
|
SYSTEM_PROMPT = """ |
|
You are an expert in composing functions. You are given a question and a set of possible functions. |
|
Based on the question, you will need to make one or more function/tool calls to achieve the purpose. |
|
If none of the function can be used, point it out. If the given question lacks the parameters required by the function, |
|
also point it out. You should only return the function call in tools call sections. |
|
|
|
If you decide to invoke any of the function(s), you MUST put it in the format of [func_name1(params_name1=params_value1, params_name2=params_value2...), func_name2(params)]\n |
|
You SHOULD NOT include any other text in the response. |
|
|
|
Here is a list of functions in JSON format that you can invoke.\n\n{functions}\n""".format(functions=FUNCTION_SCHEMA) |
|
|
|
|
|
device = "cuda" if torch.cuda.is_available() else "cpu" |
|
|
|
class FunctionCallingChat: |
|
def __init__(self, model_id: str = "meta-llama/Llama-3.2-1B-Instruct", temperature: float = 0.7): |
|
self.tokenizer = AutoTokenizer.from_pretrained(model_id) |
|
self.model = AutoModelForCausalLM.from_pretrained( |
|
model_id, device_map=device, torch_dtype=torch.bfloat16 |
|
) |
|
self.temperature = temperature |
|
|
|
def __call__(self, user_msg: str) -> dict: |
|
messages = [ |
|
{"role": "system", "content": SYSTEM_PROMPT}, |
|
{"role": "user", "content": user_msg}, |
|
] |
|
|
|
generation_cfg = GenerationConfig( |
|
max_new_tokens=128, temperature=self.temperature, top_p=0.95, do_sample=True |
|
) |
|
|
|
tokenized = self.tokenizer.apply_chat_template( |
|
messages, tokenize=True, add_generation_prompt=True, |
|
return_attention_mask=True, return_tensors="pt" |
|
).to(device) |
|
|
|
output = self.model.generate(tokenized, generation_config=generation_cfg) |
|
raw = self.tokenizer.decode(output[0], skip_special_tokens=True) |
|
tool_calls_lst_str = raw.split("assistant")[-1] |
|
|
|
try: |
|
tree = ast.parse(tool_calls_lst_str, mode="eval") |
|
call_nodes = tree.body.elts |
|
except SyntaxError: |
|
|
|
return {"raw_tool_call": tool_calls_lst_str, |
|
"results": "Cannot parse the function call."} |
|
|
|
tool_calls_result = [] |
|
for call in call_nodes: |
|
function_name = call.func.id |
|
parameters = {kw.arg: ast.literal_eval(kw.value) |
|
for kw in call.keywords} |
|
|
|
result = TOOLS[function_name](**parameters) |
|
tool_calls_result.append(result) |
|
|
|
return {"raw_tool_call": tool_calls_lst_str, |
|
"results": tool_calls_result} |