|
|
|
|
|
|
|
|
|
import math
|
|
from typing import List, Optional, Tuple, Union
|
|
|
|
import numpy as np
|
|
import torch
|
|
from diffusers.configuration_utils import ConfigMixin, register_to_config
|
|
from diffusers.schedulers.scheduling_utils import (KarrasDiffusionSchedulers,
|
|
SchedulerMixin,
|
|
SchedulerOutput)
|
|
from diffusers.utils import deprecate, is_scipy_available
|
|
|
|
if is_scipy_available():
|
|
import scipy.stats
|
|
|
|
|
|
class FlowUniPCMultistepScheduler(SchedulerMixin, ConfigMixin):
|
|
"""
|
|
`UniPCMultistepScheduler` is a training-free framework designed for the fast sampling of diffusion models.
|
|
|
|
This model inherits from [`SchedulerMixin`] and [`ConfigMixin`]. Check the superclass documentation for the generic
|
|
methods the library implements for all schedulers such as loading and saving.
|
|
|
|
Args:
|
|
num_train_timesteps (`int`, defaults to 1000):
|
|
The number of diffusion steps to train the model.
|
|
solver_order (`int`, default `2`):
|
|
The UniPC order which can be any positive integer. The effective order of accuracy is `solver_order + 1`
|
|
due to the UniC. It is recommended to use `solver_order=2` for guided sampling, and `solver_order=3` for
|
|
unconditional sampling.
|
|
prediction_type (`str`, defaults to "flow_prediction"):
|
|
Prediction type of the scheduler function; must be `flow_prediction` for this scheduler, which predicts
|
|
the flow of the diffusion process.
|
|
thresholding (`bool`, defaults to `False`):
|
|
Whether to use the "dynamic thresholding" method. This is unsuitable for latent-space diffusion models such
|
|
as Stable Diffusion.
|
|
dynamic_thresholding_ratio (`float`, defaults to 0.995):
|
|
The ratio for the dynamic thresholding method. Valid only when `thresholding=True`.
|
|
sample_max_value (`float`, defaults to 1.0):
|
|
The threshold value for dynamic thresholding. Valid only when `thresholding=True` and `predict_x0=True`.
|
|
predict_x0 (`bool`, defaults to `True`):
|
|
Whether to use the updating algorithm on the predicted x0.
|
|
solver_type (`str`, default `bh2`):
|
|
Solver type for UniPC. It is recommended to use `bh1` for unconditional sampling when steps < 10, and `bh2`
|
|
otherwise.
|
|
lower_order_final (`bool`, default `True`):
|
|
Whether to use lower-order solvers in the final steps. Only valid for < 15 inference steps. This can
|
|
stabilize the sampling of DPMSolver for steps < 15, especially for steps <= 10.
|
|
disable_corrector (`list`, default `[]`):
|
|
Decides which step to disable the corrector to mitigate the misalignment between `epsilon_theta(x_t, c)`
|
|
and `epsilon_theta(x_t^c, c)` which can influence convergence for a large guidance scale. Corrector is
|
|
usually disabled during the first few steps.
|
|
solver_p (`SchedulerMixin`, default `None`):
|
|
Any other scheduler that if specified, the algorithm becomes `solver_p + UniC`.
|
|
use_karras_sigmas (`bool`, *optional*, defaults to `False`):
|
|
Whether to use Karras sigmas for step sizes in the noise schedule during the sampling process. If `True`,
|
|
the sigmas are determined according to a sequence of noise levels {σi}.
|
|
use_exponential_sigmas (`bool`, *optional*, defaults to `False`):
|
|
Whether to use exponential sigmas for step sizes in the noise schedule during the sampling process.
|
|
timestep_spacing (`str`, defaults to `"linspace"`):
|
|
The way the timesteps should be scaled. Refer to Table 2 of the [Common Diffusion Noise Schedules and
|
|
Sample Steps are Flawed](https://huggingface.co/papers/2305.08891) for more information.
|
|
steps_offset (`int`, defaults to 0):
|
|
An offset added to the inference steps, as required by some model families.
|
|
final_sigmas_type (`str`, defaults to `"zero"`):
|
|
The final `sigma` value for the noise schedule during the sampling process. If `"sigma_min"`, the final
|
|
sigma is the same as the last sigma in the training schedule. If `zero`, the final sigma is set to 0.
|
|
"""
|
|
|
|
_compatibles = [e.name for e in KarrasDiffusionSchedulers]
|
|
order = 1
|
|
|
|
@register_to_config
|
|
def __init__(
|
|
self,
|
|
num_train_timesteps: int = 1000,
|
|
solver_order: int = 2,
|
|
prediction_type: str = "flow_prediction",
|
|
shift: Optional[float] = 1.0,
|
|
use_dynamic_shifting=False,
|
|
thresholding: bool = False,
|
|
dynamic_thresholding_ratio: float = 0.995,
|
|
sample_max_value: float = 1.0,
|
|
predict_x0: bool = True,
|
|
solver_type: str = "bh2",
|
|
lower_order_final: bool = True,
|
|
disable_corrector: List[int] = [],
|
|
solver_p: SchedulerMixin = None,
|
|
timestep_spacing: str = "linspace",
|
|
steps_offset: int = 0,
|
|
final_sigmas_type: Optional[str] = "zero",
|
|
):
|
|
|
|
if solver_type not in ["bh1", "bh2"]:
|
|
if solver_type in ["midpoint", "heun", "logrho"]:
|
|
self.register_to_config(solver_type="bh2")
|
|
else:
|
|
raise NotImplementedError(
|
|
f"{solver_type} is not implemented for {self.__class__}")
|
|
|
|
self.predict_x0 = predict_x0
|
|
|
|
self.num_inference_steps = None
|
|
alphas = np.linspace(1, 1 / num_train_timesteps,
|
|
num_train_timesteps)[::-1].copy()
|
|
sigmas = 1.0 - alphas
|
|
sigmas = torch.from_numpy(sigmas).to(dtype=torch.float32)
|
|
|
|
if not use_dynamic_shifting:
|
|
|
|
sigmas = shift * sigmas / (1 +
|
|
(shift - 1) * sigmas)
|
|
|
|
self.sigmas = sigmas
|
|
self.timesteps = sigmas * num_train_timesteps
|
|
|
|
self.model_outputs = [None] * solver_order
|
|
self.timestep_list = [None] * solver_order
|
|
self.lower_order_nums = 0
|
|
self.disable_corrector = disable_corrector
|
|
self.solver_p = solver_p
|
|
self.last_sample = None
|
|
self._step_index = None
|
|
self._begin_index = None
|
|
|
|
self.sigmas = self.sigmas.to(
|
|
"cpu")
|
|
self.sigma_min = self.sigmas[-1].item()
|
|
self.sigma_max = self.sigmas[0].item()
|
|
|
|
@property
|
|
def step_index(self):
|
|
"""
|
|
The index counter for current timestep. It will increase 1 after each scheduler step.
|
|
"""
|
|
return self._step_index
|
|
|
|
@property
|
|
def begin_index(self):
|
|
"""
|
|
The index for the first timestep. It should be set from pipeline with `set_begin_index` method.
|
|
"""
|
|
return self._begin_index
|
|
|
|
|
|
def set_begin_index(self, begin_index: int = 0):
|
|
"""
|
|
Sets the begin index for the scheduler. This function should be run from pipeline before the inference.
|
|
|
|
Args:
|
|
begin_index (`int`):
|
|
The begin index for the scheduler.
|
|
"""
|
|
self._begin_index = begin_index
|
|
|
|
|
|
def set_timesteps(
|
|
self,
|
|
num_inference_steps: Union[int, None] = None,
|
|
device: Union[str, torch.device] = None,
|
|
sigmas: Optional[List[float]] = None,
|
|
mu: Optional[Union[float, None]] = None,
|
|
shift: Optional[Union[float, None]] = None,
|
|
):
|
|
"""
|
|
Sets the discrete timesteps used for the diffusion chain (to be run before inference).
|
|
Args:
|
|
num_inference_steps (`int`):
|
|
Total number of the spacing of the time steps.
|
|
device (`str` or `torch.device`, *optional*):
|
|
The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
|
|
"""
|
|
|
|
if self.config.use_dynamic_shifting and mu is None:
|
|
raise ValueError(
|
|
" you have to pass a value for `mu` when `use_dynamic_shifting` is set to be `True`"
|
|
)
|
|
|
|
if sigmas is None:
|
|
sigmas = np.linspace(self.sigma_max, self.sigma_min,
|
|
num_inference_steps +
|
|
1).copy()[:-1]
|
|
|
|
if self.config.use_dynamic_shifting:
|
|
sigmas = self.time_shift(mu, 1.0, sigmas)
|
|
else:
|
|
if shift is None:
|
|
shift = self.config.shift
|
|
sigmas = shift * sigmas / (1 +
|
|
(shift - 1) * sigmas)
|
|
|
|
if self.config.final_sigmas_type == "sigma_min":
|
|
sigma_last = ((1 - self.alphas_cumprod[0]) /
|
|
self.alphas_cumprod[0])**0.5
|
|
elif self.config.final_sigmas_type == "zero":
|
|
sigma_last = 0
|
|
else:
|
|
raise ValueError(
|
|
f"`final_sigmas_type` must be one of 'zero', or 'sigma_min', but got {self.config.final_sigmas_type}"
|
|
)
|
|
|
|
timesteps = sigmas * self.config.num_train_timesteps
|
|
sigmas = np.concatenate([sigmas, [sigma_last]
|
|
]).astype(np.float32)
|
|
|
|
self.sigmas = torch.from_numpy(sigmas)
|
|
self.timesteps = torch.from_numpy(timesteps).to(
|
|
device=device, dtype=torch.int64)
|
|
|
|
self.num_inference_steps = len(timesteps)
|
|
|
|
self.model_outputs = [
|
|
None,
|
|
] * self.config.solver_order
|
|
self.lower_order_nums = 0
|
|
self.last_sample = None
|
|
if self.solver_p:
|
|
self.solver_p.set_timesteps(self.num_inference_steps, device=device)
|
|
|
|
|
|
self._step_index = None
|
|
self._begin_index = None
|
|
self.sigmas = self.sigmas.to(
|
|
"cpu")
|
|
|
|
|
|
def _threshold_sample(self, sample: torch.Tensor) -> torch.Tensor:
|
|
"""
|
|
"Dynamic thresholding: At each sampling step we set s to a certain percentile absolute pixel value in xt0 (the
|
|
prediction of x_0 at timestep t), and if s > 1, then we threshold xt0 to the range [-s, s] and then divide by
|
|
s. Dynamic thresholding pushes saturated pixels (those near -1 and 1) inwards, thereby actively preventing
|
|
pixels from saturation at each step. We find that dynamic thresholding results in significantly better
|
|
photorealism as well as better image-text alignment, especially when using very large guidance weights."
|
|
|
|
https://arxiv.org/abs/2205.11487
|
|
"""
|
|
dtype = sample.dtype
|
|
batch_size, channels, *remaining_dims = sample.shape
|
|
|
|
if dtype not in (torch.float32, torch.float64):
|
|
sample = sample.float(
|
|
)
|
|
|
|
|
|
sample = sample.reshape(batch_size, channels * np.prod(remaining_dims))
|
|
|
|
abs_sample = sample.abs()
|
|
|
|
s = torch.quantile(
|
|
abs_sample, self.config.dynamic_thresholding_ratio, dim=1)
|
|
s = torch.clamp(
|
|
s, min=1, max=self.config.sample_max_value
|
|
)
|
|
s = s.unsqueeze(
|
|
1)
|
|
sample = torch.clamp(
|
|
sample, -s, s
|
|
) / s
|
|
|
|
sample = sample.reshape(batch_size, channels, *remaining_dims)
|
|
sample = sample.to(dtype)
|
|
|
|
return sample
|
|
|
|
|
|
def _sigma_to_t(self, sigma):
|
|
return sigma * self.config.num_train_timesteps
|
|
|
|
def _sigma_to_alpha_sigma_t(self, sigma):
|
|
return 1 - sigma, sigma
|
|
|
|
|
|
def time_shift(self, mu: float, sigma: float, t: torch.Tensor):
|
|
return math.exp(mu) / (math.exp(mu) + (1 / t - 1)**sigma)
|
|
|
|
def convert_model_output(
|
|
self,
|
|
model_output: torch.Tensor,
|
|
*args,
|
|
sample: torch.Tensor = None,
|
|
**kwargs,
|
|
) -> torch.Tensor:
|
|
r"""
|
|
Convert the model output to the corresponding type the UniPC algorithm needs.
|
|
|
|
Args:
|
|
model_output (`torch.Tensor`):
|
|
The direct output from the learned diffusion model.
|
|
timestep (`int`):
|
|
The current discrete timestep in the diffusion chain.
|
|
sample (`torch.Tensor`):
|
|
A current instance of a sample created by the diffusion process.
|
|
|
|
Returns:
|
|
`torch.Tensor`:
|
|
The converted model output.
|
|
"""
|
|
timestep = args[0] if len(args) > 0 else kwargs.pop("timestep", None)
|
|
if sample is None:
|
|
if len(args) > 1:
|
|
sample = args[1]
|
|
else:
|
|
raise ValueError(
|
|
"missing `sample` as a required keyward argument")
|
|
if timestep is not None:
|
|
deprecate(
|
|
"timesteps",
|
|
"1.0.0",
|
|
"Passing `timesteps` is deprecated and has no effect as model output conversion is now handled via an internal counter `self.step_index`",
|
|
)
|
|
|
|
sigma = self.sigmas[self.step_index]
|
|
alpha_t, sigma_t = self._sigma_to_alpha_sigma_t(sigma)
|
|
|
|
if self.predict_x0:
|
|
if self.config.prediction_type == "flow_prediction":
|
|
sigma_t = self.sigmas[self.step_index]
|
|
x0_pred = sample - sigma_t * model_output
|
|
else:
|
|
raise ValueError(
|
|
f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample`,"
|
|
" `v_prediction` or `flow_prediction` for the UniPCMultistepScheduler."
|
|
)
|
|
|
|
if self.config.thresholding:
|
|
x0_pred = self._threshold_sample(x0_pred)
|
|
|
|
return x0_pred
|
|
else:
|
|
if self.config.prediction_type == "flow_prediction":
|
|
sigma_t = self.sigmas[self.step_index]
|
|
epsilon = sample - (1 - sigma_t) * model_output
|
|
else:
|
|
raise ValueError(
|
|
f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample`,"
|
|
" `v_prediction` or `flow_prediction` for the UniPCMultistepScheduler."
|
|
)
|
|
|
|
if self.config.thresholding:
|
|
sigma_t = self.sigmas[self.step_index]
|
|
x0_pred = sample - sigma_t * model_output
|
|
x0_pred = self._threshold_sample(x0_pred)
|
|
epsilon = model_output + x0_pred
|
|
|
|
return epsilon
|
|
|
|
def multistep_uni_p_bh_update(
|
|
self,
|
|
model_output: torch.Tensor,
|
|
*args,
|
|
sample: torch.Tensor = None,
|
|
order: int = None,
|
|
**kwargs,
|
|
) -> torch.Tensor:
|
|
"""
|
|
One step for the UniP (B(h) version). Alternatively, `self.solver_p` is used if is specified.
|
|
|
|
Args:
|
|
model_output (`torch.Tensor`):
|
|
The direct output from the learned diffusion model at the current timestep.
|
|
prev_timestep (`int`):
|
|
The previous discrete timestep in the diffusion chain.
|
|
sample (`torch.Tensor`):
|
|
A current instance of a sample created by the diffusion process.
|
|
order (`int`):
|
|
The order of UniP at this timestep (corresponds to the *p* in UniPC-p).
|
|
|
|
Returns:
|
|
`torch.Tensor`:
|
|
The sample tensor at the previous timestep.
|
|
"""
|
|
prev_timestep = args[0] if len(args) > 0 else kwargs.pop(
|
|
"prev_timestep", None)
|
|
if sample is None:
|
|
if len(args) > 1:
|
|
sample = args[1]
|
|
else:
|
|
raise ValueError(
|
|
" missing `sample` as a required keyward argument")
|
|
if order is None:
|
|
if len(args) > 2:
|
|
order = args[2]
|
|
else:
|
|
raise ValueError(
|
|
" missing `order` as a required keyward argument")
|
|
if prev_timestep is not None:
|
|
deprecate(
|
|
"prev_timestep",
|
|
"1.0.0",
|
|
"Passing `prev_timestep` is deprecated and has no effect as model output conversion is now handled via an internal counter `self.step_index`",
|
|
)
|
|
model_output_list = self.model_outputs
|
|
|
|
s0 = self.timestep_list[-1]
|
|
m0 = model_output_list[-1]
|
|
x = sample
|
|
|
|
if self.solver_p:
|
|
x_t = self.solver_p.step(model_output, s0, x).prev_sample
|
|
return x_t
|
|
|
|
sigma_t, sigma_s0 = self.sigmas[self.step_index + 1], self.sigmas[
|
|
self.step_index]
|
|
alpha_t, sigma_t = self._sigma_to_alpha_sigma_t(sigma_t)
|
|
alpha_s0, sigma_s0 = self._sigma_to_alpha_sigma_t(sigma_s0)
|
|
|
|
lambda_t = torch.log(alpha_t) - torch.log(sigma_t)
|
|
lambda_s0 = torch.log(alpha_s0) - torch.log(sigma_s0)
|
|
|
|
h = lambda_t - lambda_s0
|
|
device = sample.device
|
|
|
|
rks = []
|
|
D1s = []
|
|
for i in range(1, order):
|
|
si = self.step_index - i
|
|
mi = model_output_list[-(i + 1)]
|
|
alpha_si, sigma_si = self._sigma_to_alpha_sigma_t(self.sigmas[si])
|
|
lambda_si = torch.log(alpha_si) - torch.log(sigma_si)
|
|
rk = (lambda_si - lambda_s0) / h
|
|
rks.append(rk)
|
|
D1s.append((mi - m0) / rk)
|
|
|
|
rks.append(1.0)
|
|
rks = torch.tensor(rks, device=device)
|
|
|
|
R = []
|
|
b = []
|
|
|
|
hh = -h if self.predict_x0 else h
|
|
h_phi_1 = torch.expm1(hh)
|
|
h_phi_k = h_phi_1 / hh - 1
|
|
|
|
factorial_i = 1
|
|
|
|
if self.config.solver_type == "bh1":
|
|
B_h = hh
|
|
elif self.config.solver_type == "bh2":
|
|
B_h = torch.expm1(hh)
|
|
else:
|
|
raise NotImplementedError()
|
|
|
|
for i in range(1, order + 1):
|
|
R.append(torch.pow(rks, i - 1))
|
|
b.append(h_phi_k * factorial_i / B_h)
|
|
factorial_i *= i + 1
|
|
h_phi_k = h_phi_k / hh - 1 / factorial_i
|
|
|
|
R = torch.stack(R)
|
|
b = torch.tensor(b, device=device)
|
|
|
|
if len(D1s) > 0:
|
|
D1s = torch.stack(D1s, dim=1)
|
|
|
|
if order == 2:
|
|
rhos_p = torch.tensor([0.5], dtype=x.dtype, device=device)
|
|
else:
|
|
rhos_p = torch.linalg.solve(R[:-1, :-1],
|
|
b[:-1]).to(device).to(x.dtype)
|
|
else:
|
|
D1s = None
|
|
|
|
if self.predict_x0:
|
|
x_t_ = sigma_t / sigma_s0 * x - alpha_t * h_phi_1 * m0
|
|
if D1s is not None:
|
|
pred_res = torch.einsum("k,bkc...->bc...", rhos_p,
|
|
D1s)
|
|
else:
|
|
pred_res = 0
|
|
x_t = x_t_ - alpha_t * B_h * pred_res
|
|
else:
|
|
x_t_ = alpha_t / alpha_s0 * x - sigma_t * h_phi_1 * m0
|
|
if D1s is not None:
|
|
pred_res = torch.einsum("k,bkc...->bc...", rhos_p,
|
|
D1s)
|
|
else:
|
|
pred_res = 0
|
|
x_t = x_t_ - sigma_t * B_h * pred_res
|
|
|
|
x_t = x_t.to(x.dtype)
|
|
return x_t
|
|
|
|
def multistep_uni_c_bh_update(
|
|
self,
|
|
this_model_output: torch.Tensor,
|
|
*args,
|
|
last_sample: torch.Tensor = None,
|
|
this_sample: torch.Tensor = None,
|
|
order: int = None,
|
|
**kwargs,
|
|
) -> torch.Tensor:
|
|
"""
|
|
One step for the UniC (B(h) version).
|
|
|
|
Args:
|
|
this_model_output (`torch.Tensor`):
|
|
The model outputs at `x_t`.
|
|
this_timestep (`int`):
|
|
The current timestep `t`.
|
|
last_sample (`torch.Tensor`):
|
|
The generated sample before the last predictor `x_{t-1}`.
|
|
this_sample (`torch.Tensor`):
|
|
The generated sample after the last predictor `x_{t}`.
|
|
order (`int`):
|
|
The `p` of UniC-p at this step. The effective order of accuracy should be `order + 1`.
|
|
|
|
Returns:
|
|
`torch.Tensor`:
|
|
The corrected sample tensor at the current timestep.
|
|
"""
|
|
this_timestep = args[0] if len(args) > 0 else kwargs.pop(
|
|
"this_timestep", None)
|
|
if last_sample is None:
|
|
if len(args) > 1:
|
|
last_sample = args[1]
|
|
else:
|
|
raise ValueError(
|
|
" missing`last_sample` as a required keyward argument")
|
|
if this_sample is None:
|
|
if len(args) > 2:
|
|
this_sample = args[2]
|
|
else:
|
|
raise ValueError(
|
|
" missing`this_sample` as a required keyward argument")
|
|
if order is None:
|
|
if len(args) > 3:
|
|
order = args[3]
|
|
else:
|
|
raise ValueError(
|
|
" missing`order` as a required keyward argument")
|
|
if this_timestep is not None:
|
|
deprecate(
|
|
"this_timestep",
|
|
"1.0.0",
|
|
"Passing `this_timestep` is deprecated and has no effect as model output conversion is now handled via an internal counter `self.step_index`",
|
|
)
|
|
|
|
model_output_list = self.model_outputs
|
|
|
|
m0 = model_output_list[-1]
|
|
x = last_sample
|
|
x_t = this_sample
|
|
model_t = this_model_output
|
|
|
|
sigma_t, sigma_s0 = self.sigmas[self.step_index], self.sigmas[
|
|
self.step_index - 1]
|
|
alpha_t, sigma_t = self._sigma_to_alpha_sigma_t(sigma_t)
|
|
alpha_s0, sigma_s0 = self._sigma_to_alpha_sigma_t(sigma_s0)
|
|
|
|
lambda_t = torch.log(alpha_t) - torch.log(sigma_t)
|
|
lambda_s0 = torch.log(alpha_s0) - torch.log(sigma_s0)
|
|
|
|
h = lambda_t - lambda_s0
|
|
device = this_sample.device
|
|
|
|
rks = []
|
|
D1s = []
|
|
for i in range(1, order):
|
|
si = self.step_index - (i + 1)
|
|
mi = model_output_list[-(i + 1)]
|
|
alpha_si, sigma_si = self._sigma_to_alpha_sigma_t(self.sigmas[si])
|
|
lambda_si = torch.log(alpha_si) - torch.log(sigma_si)
|
|
rk = (lambda_si - lambda_s0) / h
|
|
rks.append(rk)
|
|
D1s.append((mi - m0) / rk)
|
|
|
|
rks.append(1.0)
|
|
rks = torch.tensor(rks, device=device)
|
|
|
|
R = []
|
|
b = []
|
|
|
|
hh = -h if self.predict_x0 else h
|
|
h_phi_1 = torch.expm1(hh)
|
|
h_phi_k = h_phi_1 / hh - 1
|
|
|
|
factorial_i = 1
|
|
|
|
if self.config.solver_type == "bh1":
|
|
B_h = hh
|
|
elif self.config.solver_type == "bh2":
|
|
B_h = torch.expm1(hh)
|
|
else:
|
|
raise NotImplementedError()
|
|
|
|
for i in range(1, order + 1):
|
|
R.append(torch.pow(rks, i - 1))
|
|
b.append(h_phi_k * factorial_i / B_h)
|
|
factorial_i *= i + 1
|
|
h_phi_k = h_phi_k / hh - 1 / factorial_i
|
|
|
|
R = torch.stack(R)
|
|
b = torch.tensor(b, device=device)
|
|
|
|
if len(D1s) > 0:
|
|
D1s = torch.stack(D1s, dim=1)
|
|
else:
|
|
D1s = None
|
|
|
|
|
|
if order == 1:
|
|
rhos_c = torch.tensor([0.5], dtype=x.dtype, device=device)
|
|
else:
|
|
rhos_c = torch.linalg.solve(R, b).to(device).to(x.dtype)
|
|
|
|
if self.predict_x0:
|
|
x_t_ = sigma_t / sigma_s0 * x - alpha_t * h_phi_1 * m0
|
|
if D1s is not None:
|
|
corr_res = torch.einsum("k,bkc...->bc...", rhos_c[:-1], D1s)
|
|
else:
|
|
corr_res = 0
|
|
D1_t = model_t - m0
|
|
x_t = x_t_ - alpha_t * B_h * (corr_res + rhos_c[-1] * D1_t)
|
|
else:
|
|
x_t_ = alpha_t / alpha_s0 * x - sigma_t * h_phi_1 * m0
|
|
if D1s is not None:
|
|
corr_res = torch.einsum("k,bkc...->bc...", rhos_c[:-1], D1s)
|
|
else:
|
|
corr_res = 0
|
|
D1_t = model_t - m0
|
|
x_t = x_t_ - sigma_t * B_h * (corr_res + rhos_c[-1] * D1_t)
|
|
x_t = x_t.to(x.dtype)
|
|
return x_t
|
|
|
|
def index_for_timestep(self, timestep, schedule_timesteps=None):
|
|
if schedule_timesteps is None:
|
|
schedule_timesteps = self.timesteps
|
|
|
|
indices = (schedule_timesteps == timestep).nonzero()
|
|
|
|
|
|
|
|
|
|
|
|
pos = 1 if len(indices) > 1 else 0
|
|
|
|
return indices[pos].item()
|
|
|
|
|
|
def _init_step_index(self, timestep):
|
|
"""
|
|
Initialize the step_index counter for the scheduler.
|
|
"""
|
|
|
|
if self.begin_index is None:
|
|
if isinstance(timestep, torch.Tensor):
|
|
timestep = timestep.to(self.timesteps.device)
|
|
self._step_index = self.index_for_timestep(timestep)
|
|
else:
|
|
self._step_index = self._begin_index
|
|
|
|
def step(self,
|
|
model_output: torch.Tensor,
|
|
timestep: Union[int, torch.Tensor],
|
|
sample: torch.Tensor,
|
|
return_dict: bool = True,
|
|
generator=None) -> Union[SchedulerOutput, Tuple]:
|
|
"""
|
|
Predict the sample from the previous timestep by reversing the SDE. This function propagates the sample with
|
|
the multistep UniPC.
|
|
|
|
Args:
|
|
model_output (`torch.Tensor`):
|
|
The direct output from learned diffusion model.
|
|
timestep (`int`):
|
|
The current discrete timestep in the diffusion chain.
|
|
sample (`torch.Tensor`):
|
|
A current instance of a sample created by the diffusion process.
|
|
return_dict (`bool`):
|
|
Whether or not to return a [`~schedulers.scheduling_utils.SchedulerOutput`] or `tuple`.
|
|
|
|
Returns:
|
|
[`~schedulers.scheduling_utils.SchedulerOutput`] or `tuple`:
|
|
If return_dict is `True`, [`~schedulers.scheduling_utils.SchedulerOutput`] is returned, otherwise a
|
|
tuple is returned where the first element is the sample tensor.
|
|
|
|
"""
|
|
if self.num_inference_steps is None:
|
|
raise ValueError(
|
|
"Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler"
|
|
)
|
|
|
|
if self.step_index is None:
|
|
self._init_step_index(timestep)
|
|
|
|
use_corrector = (
|
|
self.step_index > 0 and
|
|
self.step_index - 1 not in self.disable_corrector and
|
|
self.last_sample is not None
|
|
)
|
|
|
|
model_output_convert = self.convert_model_output(
|
|
model_output, sample=sample)
|
|
if use_corrector:
|
|
sample = self.multistep_uni_c_bh_update(
|
|
this_model_output=model_output_convert,
|
|
last_sample=self.last_sample,
|
|
this_sample=sample,
|
|
order=self.this_order,
|
|
)
|
|
|
|
for i in range(self.config.solver_order - 1):
|
|
self.model_outputs[i] = self.model_outputs[i + 1]
|
|
self.timestep_list[i] = self.timestep_list[i + 1]
|
|
|
|
self.model_outputs[-1] = model_output_convert
|
|
self.timestep_list[-1] = timestep
|
|
|
|
if self.config.lower_order_final:
|
|
this_order = min(self.config.solver_order,
|
|
len(self.timesteps) -
|
|
self.step_index)
|
|
else:
|
|
this_order = self.config.solver_order
|
|
|
|
self.this_order = min(this_order,
|
|
self.lower_order_nums + 1)
|
|
assert self.this_order > 0
|
|
|
|
self.last_sample = sample
|
|
prev_sample = self.multistep_uni_p_bh_update(
|
|
model_output=model_output,
|
|
sample=sample,
|
|
order=self.this_order,
|
|
)
|
|
|
|
if self.lower_order_nums < self.config.solver_order:
|
|
self.lower_order_nums += 1
|
|
|
|
|
|
self._step_index += 1
|
|
|
|
if not return_dict:
|
|
return (prev_sample,)
|
|
|
|
return SchedulerOutput(prev_sample=prev_sample)
|
|
|
|
def scale_model_input(self, sample: torch.Tensor, *args,
|
|
**kwargs) -> torch.Tensor:
|
|
"""
|
|
Ensures interchangeability with schedulers that need to scale the denoising model input depending on the
|
|
current timestep.
|
|
|
|
Args:
|
|
sample (`torch.Tensor`):
|
|
The input sample.
|
|
|
|
Returns:
|
|
`torch.Tensor`:
|
|
A scaled input sample.
|
|
"""
|
|
return sample
|
|
|
|
|
|
def add_noise(
|
|
self,
|
|
original_samples: torch.Tensor,
|
|
noise: torch.Tensor,
|
|
timesteps: torch.IntTensor,
|
|
) -> torch.Tensor:
|
|
|
|
sigmas = self.sigmas.to(
|
|
device=original_samples.device, dtype=original_samples.dtype)
|
|
if original_samples.device.type == "mps" and torch.is_floating_point(
|
|
timesteps):
|
|
|
|
schedule_timesteps = self.timesteps.to(
|
|
original_samples.device, dtype=torch.float32)
|
|
timesteps = timesteps.to(
|
|
original_samples.device, dtype=torch.float32)
|
|
else:
|
|
schedule_timesteps = self.timesteps.to(original_samples.device)
|
|
timesteps = timesteps.to(original_samples.device)
|
|
|
|
|
|
if self.begin_index is None:
|
|
step_indices = [
|
|
self.index_for_timestep(t, schedule_timesteps)
|
|
for t in timesteps
|
|
]
|
|
elif self.step_index is not None:
|
|
|
|
step_indices = [self.step_index] * timesteps.shape[0]
|
|
else:
|
|
|
|
step_indices = [self.begin_index] * timesteps.shape[0]
|
|
|
|
sigma = sigmas[step_indices].flatten()
|
|
while len(sigma.shape) < len(original_samples.shape):
|
|
sigma = sigma.unsqueeze(-1)
|
|
|
|
alpha_t, sigma_t = self._sigma_to_alpha_sigma_t(sigma)
|
|
noisy_samples = alpha_t * original_samples + sigma_t * noise
|
|
return noisy_samples
|
|
|
|
def __len__(self):
|
|
return self.config.num_train_timesteps
|
|
|