|
|
|
|
|
import cv2
|
|
import torch
|
|
import torch.nn as nn
|
|
import torch.nn.functional as F
|
|
from torchvision.transforms import Compose
|
|
|
|
from .dinov2 import DINOv2
|
|
from .util.blocks import FeatureFusionBlock, _make_scratch
|
|
from .util.transform import Resize, NormalizeImage, PrepareForNet
|
|
|
|
|
|
class DepthAnythingV2(nn.Module):
|
|
def __init__(
|
|
self,
|
|
encoder='vitl',
|
|
features=256,
|
|
out_channels=[256, 512, 1024, 1024],
|
|
use_bn=False,
|
|
use_clstoken=False
|
|
):
|
|
super(DepthAnythingV2, self).__init__()
|
|
|
|
self.intermediate_layer_idx = {
|
|
'vits': [2, 5, 8, 11],
|
|
'vitb': [2, 5, 8, 11],
|
|
'vitl': [4, 11, 17, 23],
|
|
'vitg': [9, 19, 29, 39]
|
|
}
|
|
|
|
self.encoder = encoder
|
|
self.pretrained = DINOv2(model_name=encoder)
|
|
|
|
self.depth_head = DPTHead(self.pretrained.embed_dim, features, use_bn, out_channels=out_channels,
|
|
use_clstoken=use_clstoken)
|
|
|
|
def forward(self, x):
|
|
patch_h, patch_w = x.shape[-2] // 14, x.shape[-1] // 14
|
|
|
|
features = self.pretrained.get_intermediate_layers(x, self.intermediate_layer_idx[self.encoder],
|
|
return_class_token=True)
|
|
|
|
depth = self.depth_head(features, patch_h, patch_w)
|
|
depth = F.relu(depth)
|
|
|
|
return depth.squeeze(1)
|
|
|
|
@torch.no_grad()
|
|
def infer_image(self, raw_image, input_size=518):
|
|
image, (h, w) = self.image2tensor(raw_image, input_size)
|
|
|
|
depth = self.forward(image)
|
|
depth = F.interpolate(depth[:, None], (h, w), mode="bilinear", align_corners=True)[0, 0]
|
|
|
|
return depth.cpu().numpy()
|
|
|
|
def image2tensor(self, raw_image, input_size=518):
|
|
transform = Compose([
|
|
Resize(
|
|
width=input_size,
|
|
height=input_size,
|
|
resize_target=False,
|
|
keep_aspect_ratio=True,
|
|
ensure_multiple_of=14,
|
|
resize_method='lower_bound',
|
|
image_interpolation_method=cv2.INTER_CUBIC,
|
|
),
|
|
NormalizeImage(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
|
|
PrepareForNet(),
|
|
])
|
|
|
|
h, w = raw_image.shape[:2]
|
|
|
|
image = cv2.cvtColor(raw_image, cv2.COLOR_BGR2RGB) / 255.0
|
|
|
|
image = transform({'image': image})['image']
|
|
image = torch.from_numpy(image).unsqueeze(0)
|
|
|
|
DEVICE = 'cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu'
|
|
image = image.to(DEVICE)
|
|
|
|
return image, (h, w)
|
|
|
|
|
|
class DPTHead(nn.Module):
|
|
def __init__(
|
|
self,
|
|
in_channels,
|
|
features=256,
|
|
use_bn=False,
|
|
out_channels=[256, 512, 1024, 1024],
|
|
use_clstoken=False
|
|
):
|
|
super(DPTHead, self).__init__()
|
|
|
|
self.use_clstoken = use_clstoken
|
|
|
|
self.projects = nn.ModuleList([
|
|
nn.Conv2d(
|
|
in_channels=in_channels,
|
|
out_channels=out_channel,
|
|
kernel_size=1,
|
|
stride=1,
|
|
padding=0,
|
|
) for out_channel in out_channels
|
|
])
|
|
|
|
self.resize_layers = nn.ModuleList([
|
|
nn.ConvTranspose2d(
|
|
in_channels=out_channels[0],
|
|
out_channels=out_channels[0],
|
|
kernel_size=4,
|
|
stride=4,
|
|
padding=0),
|
|
nn.ConvTranspose2d(
|
|
in_channels=out_channels[1],
|
|
out_channels=out_channels[1],
|
|
kernel_size=2,
|
|
stride=2,
|
|
padding=0),
|
|
nn.Identity(),
|
|
nn.Conv2d(
|
|
in_channels=out_channels[3],
|
|
out_channels=out_channels[3],
|
|
kernel_size=3,
|
|
stride=2,
|
|
padding=1)
|
|
])
|
|
|
|
if use_clstoken:
|
|
self.readout_projects = nn.ModuleList()
|
|
for _ in range(len(self.projects)):
|
|
self.readout_projects.append(
|
|
nn.Sequential(
|
|
nn.Linear(2 * in_channels, in_channels),
|
|
nn.GELU()))
|
|
|
|
self.scratch = _make_scratch(
|
|
out_channels,
|
|
features,
|
|
groups=1,
|
|
expand=False,
|
|
)
|
|
|
|
self.scratch.stem_transpose = None
|
|
|
|
self.scratch.refinenet1 = _make_fusion_block(features, use_bn)
|
|
self.scratch.refinenet2 = _make_fusion_block(features, use_bn)
|
|
self.scratch.refinenet3 = _make_fusion_block(features, use_bn)
|
|
self.scratch.refinenet4 = _make_fusion_block(features, use_bn)
|
|
|
|
head_features_1 = features
|
|
head_features_2 = 32
|
|
|
|
self.scratch.output_conv1 = nn.Conv2d(head_features_1, head_features_1 // 2, kernel_size=3, stride=1, padding=1)
|
|
self.scratch.output_conv2 = nn.Sequential(
|
|
nn.Conv2d(head_features_1 // 2, head_features_2, kernel_size=3, stride=1, padding=1),
|
|
nn.ReLU(True),
|
|
nn.Conv2d(head_features_2, 1, kernel_size=1, stride=1, padding=0),
|
|
nn.ReLU(True),
|
|
nn.Identity(),
|
|
)
|
|
|
|
def forward(self, out_features, patch_h, patch_w):
|
|
out = []
|
|
for i, x in enumerate(out_features):
|
|
if self.use_clstoken:
|
|
x, cls_token = x[0], x[1]
|
|
readout = cls_token.unsqueeze(1).expand_as(x)
|
|
x = self.readout_projects[i](torch.cat((x, readout), -1))
|
|
else:
|
|
x = x[0]
|
|
|
|
x = x.permute(0, 2, 1).reshape((x.shape[0], x.shape[-1], patch_h, patch_w))
|
|
|
|
x = self.projects[i](x)
|
|
x = self.resize_layers[i](x)
|
|
|
|
out.append(x)
|
|
|
|
layer_1, layer_2, layer_3, layer_4 = out
|
|
|
|
layer_1_rn = self.scratch.layer1_rn(layer_1)
|
|
layer_2_rn = self.scratch.layer2_rn(layer_2)
|
|
layer_3_rn = self.scratch.layer3_rn(layer_3)
|
|
layer_4_rn = self.scratch.layer4_rn(layer_4)
|
|
|
|
path_4 = self.scratch.refinenet4(layer_4_rn, size=layer_3_rn.shape[2:])
|
|
path_3 = self.scratch.refinenet3(path_4, layer_3_rn, size=layer_2_rn.shape[2:])
|
|
path_2 = self.scratch.refinenet2(path_3, layer_2_rn, size=layer_1_rn.shape[2:])
|
|
path_1 = self.scratch.refinenet1(path_2, layer_1_rn)
|
|
|
|
out = self.scratch.output_conv1(path_1)
|
|
out = F.interpolate(out, (int(patch_h * 14), int(patch_w * 14)), mode="bilinear", align_corners=True)
|
|
out = self.scratch.output_conv2(out)
|
|
|
|
return out
|
|
|
|
|
|
def _make_fusion_block(features, use_bn, size=None):
|
|
return FeatureFusionBlock(
|
|
features,
|
|
nn.ReLU(False),
|
|
deconv=False,
|
|
bn=use_bn,
|
|
expand=False,
|
|
align_corners=True,
|
|
size=size,
|
|
)
|
|
|