Portrait-Animation / app-backup.py
openfree's picture
Create app-backup.py
7bf073b verified
import spaces
import gradio as gr
import os
import numpy as np
from pydub import AudioSegment
import hashlib
from sonic import Sonic
from PIL import Image
import torch
# 모델 초기화
cmd = (
'python3 -m pip install "huggingface_hub[cli]"; '
'huggingface-cli download LeonJoe13/Sonic --local-dir checkpoints; '
'huggingface-cli download stabilityai/stable-video-diffusion-img2vid-xt --local-dir checkpoints/stable-video-diffusion-img2vid-xt; '
'huggingface-cli download openai/whisper-tiny --local-dir checkpoints/whisper-tiny;'
)
os.system(cmd)
pipe = Sonic()
def get_md5(content):
md5hash = hashlib.md5(content)
return md5hash.hexdigest()
@spaces.GPU(duration=300) # 긴 비디오 처리를 위해 duration 300초로 설정
def get_video_res(img_path, audio_path, res_video_path, dynamic_scale=1.0):
expand_ratio = 0.5
min_resolution = 512
inference_steps = 25 # 2초 분량의 비디오(25 프레임)로 고정
# 오디오 길이(참고용) 출력
audio = AudioSegment.from_file(audio_path)
duration = len(audio) / 1000.0 # 초 단위
print(f"Audio duration: {duration} seconds, using inference_steps: {inference_steps}")
face_info = pipe.preprocess(img_path, expand_ratio=expand_ratio)
print(f"Face detection info: {face_info}")
if face_info['face_num'] > 0:
crop_image_path = img_path + '.crop.png'
pipe.crop_image(img_path, crop_image_path, face_info['crop_bbox'])
img_path = crop_image_path
os.makedirs(os.path.dirname(res_video_path), exist_ok=True)
# 고정된 inference_steps(25)로 비디오 생성
pipe.process(
img_path,
audio_path,
res_video_path,
min_resolution=min_resolution,
inference_steps=inference_steps,
dynamic_scale=dynamic_scale
)
return res_video_path
else:
return -1
tmp_path = './tmp_path/'
res_path = './res_path/'
os.makedirs(tmp_path, exist_ok=True)
os.makedirs(res_path, exist_ok=True)
def process_sonic(image, audio, dynamic_scale):
# 입력 검증
if image is None:
raise gr.Error("Please upload an image")
if audio is None:
raise gr.Error("Please upload an audio file")
img_md5 = get_md5(np.array(image))
audio_md5 = get_md5(audio[1])
print(f"Processing with image hash: {img_md5}, audio hash: {audio_md5}")
sampling_rate, arr = audio[:2]
if len(arr.shape) == 1:
arr = arr[:, None]
# numpy array로부터 AudioSegment 생성
audio_segment = AudioSegment(
arr.tobytes(),
frame_rate=sampling_rate,
sample_width=arr.dtype.itemsize,
channels=arr.shape[1]
)
audio_segment = audio_segment.set_frame_rate(sampling_rate)
# 파일 경로 생성
image_path = os.path.abspath(os.path.join(tmp_path, f'{img_md5}.png'))
audio_path = os.path.abspath(os.path.join(tmp_path, f'{audio_md5}.wav'))
res_video_path = os.path.abspath(os.path.join(res_path, f'{img_md5}_{audio_md5}_{dynamic_scale}.mp4'))
# 입력 파일이 없으면 저장
if not os.path.exists(image_path):
image.save(image_path)
if not os.path.exists(audio_path):
audio_segment.export(audio_path, format="wav")
# 캐시된 결과가 있으면 반환, 없으면 새로 생성
if os.path.exists(res_video_path):
print(f"Using cached result: {res_video_path}")
return res_video_path
else:
print(f"Generating new video with dynamic scale: {dynamic_scale}")
return get_video_res(image_path, audio_path, res_video_path, dynamic_scale)
# 예시 데이터를 위한 dummy 함수 (필요시 실제 예시 데이터를 추가하세요)
def get_example():
return []
css = """
.gradio-container {
font-family: 'Arial', sans-serif;
}
.main-header {
text-align: center;
color: #2a2a2a;
margin-bottom: 2em;
}
.parameter-section {
background-color: #f5f5f5;
padding: 1em;
border-radius: 8px;
margin: 1em 0;
}
.example-section {
margin-top: 2em;
}
"""
with gr.Blocks(css=css,theme="apriel") as demo:
gr.HTML("""
<div class="main-header">
<h1>🎭 Sonic: Advanced Portrait Animation</h1>
<p>Transform still images into dynamic videos synchronized with audio</p>
</div>
""")
with gr.Row():
with gr.Column():
image_input = gr.Image(
type='pil',
label="Portrait Image",
elem_id="image_input"
)
audio_input = gr.Audio(
label="Voice/Audio Input",
elem_id="audio_input",
type="numpy"
)
with gr.Column():
dynamic_scale = gr.Slider(
minimum=0.5,
maximum=2.0,
value=1.0,
step=0.1,
label="Animation Intensity",
info="Adjust to control movement intensity (0.5: subtle, 2.0: dramatic)"
)
process_btn = gr.Button(
"Generate Animation",
variant="primary",
elem_id="process_btn"
)
with gr.Column():
video_output = gr.Video(
label="Generated Animation",
elem_id="video_output"
)
process_btn.click(
fn=process_sonic,
inputs=[image_input, audio_input, dynamic_scale],
outputs=video_output,
api_name="animate"
)
gr.Examples(
examples=get_example(),
fn=process_sonic,
inputs=[image_input, audio_input, dynamic_scale],
outputs=video_output,
cache_examples=False
)
# 공개 링크 생성: share=True
demo.launch(share=True)