Spaces:
Build error
Build error
| from module.models_onnx import SynthesizerTrn, symbols | |
| from AR.models.t2s_lightning_module_onnx import Text2SemanticLightningModule | |
| import torch | |
| import torchaudio | |
| from torch import nn | |
| from feature_extractor import cnhubert | |
| cnhubert_base_path = "pretrained_models/chinese-hubert-base" | |
| cnhubert.cnhubert_base_path=cnhubert_base_path | |
| ssl_model = cnhubert.get_model() | |
| from text import cleaned_text_to_sequence | |
| import soundfile | |
| from tools.my_utils import load_audio | |
| import os | |
| import json | |
| def spectrogram_torch(y, n_fft, sampling_rate, hop_size, win_size, center=False): | |
| hann_window = torch.hann_window(win_size).to( | |
| dtype=y.dtype, device=y.device | |
| ) | |
| y = torch.nn.functional.pad( | |
| y.unsqueeze(1), | |
| (int((n_fft - hop_size) / 2), int((n_fft - hop_size) / 2)), | |
| mode="reflect", | |
| ) | |
| y = y.squeeze(1) | |
| spec = torch.stft( | |
| y, | |
| n_fft, | |
| hop_length=hop_size, | |
| win_length=win_size, | |
| window=hann_window, | |
| center=center, | |
| pad_mode="reflect", | |
| normalized=False, | |
| onesided=True, | |
| return_complex=False, | |
| ) | |
| spec = torch.sqrt(spec.pow(2).sum(-1) + 1e-6) | |
| return spec | |
| class DictToAttrRecursive(dict): | |
| def __init__(self, input_dict): | |
| super().__init__(input_dict) | |
| for key, value in input_dict.items(): | |
| if isinstance(value, dict): | |
| value = DictToAttrRecursive(value) | |
| self[key] = value | |
| setattr(self, key, value) | |
| def __getattr__(self, item): | |
| try: | |
| return self[item] | |
| except KeyError: | |
| raise AttributeError(f"Attribute {item} not found") | |
| def __setattr__(self, key, value): | |
| if isinstance(value, dict): | |
| value = DictToAttrRecursive(value) | |
| super(DictToAttrRecursive, self).__setitem__(key, value) | |
| super().__setattr__(key, value) | |
| def __delattr__(self, item): | |
| try: | |
| del self[item] | |
| except KeyError: | |
| raise AttributeError(f"Attribute {item} not found") | |
| class T2SEncoder(nn.Module): | |
| def __init__(self, t2s, vits): | |
| super().__init__() | |
| self.encoder = t2s.onnx_encoder | |
| self.vits = vits | |
| def forward(self, ref_seq, text_seq, ref_bert, text_bert, ssl_content): | |
| codes = self.vits.extract_latent(ssl_content) | |
| prompt_semantic = codes[0, 0] | |
| bert = torch.cat([ref_bert.transpose(0, 1), text_bert.transpose(0, 1)], 1) | |
| all_phoneme_ids = torch.cat([ref_seq, text_seq], 1) | |
| bert = bert.unsqueeze(0) | |
| prompt = prompt_semantic.unsqueeze(0) | |
| return self.encoder(all_phoneme_ids, bert), prompt | |
| class T2SModel(nn.Module): | |
| def __init__(self, t2s_path, vits_model): | |
| super().__init__() | |
| dict_s1 = torch.load(t2s_path, map_location="cpu") | |
| self.config = dict_s1["config"] | |
| self.t2s_model = Text2SemanticLightningModule(self.config, "ojbk", is_train=False) | |
| self.t2s_model.load_state_dict(dict_s1["weight"]) | |
| self.t2s_model.eval() | |
| self.vits_model = vits_model.vq_model | |
| self.hz = 50 | |
| self.max_sec = self.config["data"]["max_sec"] | |
| self.t2s_model.model.top_k = torch.LongTensor([self.config["inference"]["top_k"]]) | |
| self.t2s_model.model.early_stop_num = torch.LongTensor([self.hz * self.max_sec]) | |
| self.t2s_model = self.t2s_model.model | |
| self.t2s_model.init_onnx() | |
| self.onnx_encoder = T2SEncoder(self.t2s_model, self.vits_model) | |
| self.first_stage_decoder = self.t2s_model.first_stage_decoder | |
| self.stage_decoder = self.t2s_model.stage_decoder | |
| #self.t2s_model = torch.jit.script(self.t2s_model) | |
| def forward(self, ref_seq, text_seq, ref_bert, text_bert, ssl_content): | |
| early_stop_num = self.t2s_model.early_stop_num | |
| #[1,N] [1,N] [N, 1024] [N, 1024] [1, 768, N] | |
| x, prompts = self.onnx_encoder(ref_seq, text_seq, ref_bert, text_bert, ssl_content) | |
| prefix_len = prompts.shape[1] | |
| #[1,N,512] [1,N] | |
| y, k, v, y_emb, x_example = self.first_stage_decoder(x, prompts) | |
| stop = False | |
| for idx in range(1, 1500): | |
| #[1, N] [N_layer, N, 1, 512] [N_layer, N, 1, 512] [1, N, 512] [1] [1, N, 512] [1, N] | |
| enco = self.stage_decoder(y, k, v, y_emb, x_example) | |
| y, k, v, y_emb, logits, samples = enco | |
| if early_stop_num != -1 and (y.shape[1] - prefix_len) > early_stop_num: | |
| stop = True | |
| if torch.argmax(logits, dim=-1)[0] == self.t2s_model.EOS or samples[0, 0] == self.t2s_model.EOS: | |
| stop = True | |
| if stop: | |
| break | |
| y[0, -1] = 0 | |
| return y[:, -idx:].unsqueeze(0) | |
| def export(self, ref_seq, text_seq, ref_bert, text_bert, ssl_content, project_name, dynamo=False): | |
| #self.onnx_encoder = torch.jit.script(self.onnx_encoder) | |
| if dynamo: | |
| export_options = torch.onnx.ExportOptions(dynamic_shapes=True) | |
| onnx_encoder_export_output = torch.onnx.dynamo_export( | |
| self.onnx_encoder, | |
| (ref_seq, text_seq, ref_bert, text_bert, ssl_content), | |
| export_options=export_options | |
| ) | |
| onnx_encoder_export_output.save(f"onnx/{project_name}/{project_name}_t2s_encoder.onnx") | |
| return | |
| torch.onnx.export( | |
| self.onnx_encoder, | |
| (ref_seq, text_seq, ref_bert, text_bert, ssl_content), | |
| f"onnx/{project_name}/{project_name}_t2s_encoder.onnx", | |
| input_names=["ref_seq", "text_seq", "ref_bert", "text_bert", "ssl_content"], | |
| output_names=["x", "prompts"], | |
| dynamic_axes={ | |
| "ref_seq": {1 : "ref_length"}, | |
| "text_seq": {1 : "text_length"}, | |
| "ref_bert": {0 : "ref_length"}, | |
| "text_bert": {0 : "text_length"}, | |
| "ssl_content": {2 : "ssl_length"}, | |
| }, | |
| opset_version=16 | |
| ) | |
| x, prompts = self.onnx_encoder(ref_seq, text_seq, ref_bert, text_bert, ssl_content) | |
| torch.onnx.export( | |
| self.first_stage_decoder, | |
| (x, prompts), | |
| f"onnx/{project_name}/{project_name}_t2s_fsdec.onnx", | |
| input_names=["x", "prompts"], | |
| output_names=["y", "k", "v", "y_emb", "x_example"], | |
| dynamic_axes={ | |
| "x": {1 : "x_length"}, | |
| "prompts": {1 : "prompts_length"}, | |
| }, | |
| verbose=False, | |
| opset_version=16 | |
| ) | |
| y, k, v, y_emb, x_example = self.first_stage_decoder(x, prompts) | |
| torch.onnx.export( | |
| self.stage_decoder, | |
| (y, k, v, y_emb, x_example), | |
| f"onnx/{project_name}/{project_name}_t2s_sdec.onnx", | |
| input_names=["iy", "ik", "iv", "iy_emb", "ix_example"], | |
| output_names=["y", "k", "v", "y_emb", "logits", "samples"], | |
| dynamic_axes={ | |
| "iy": {1 : "iy_length"}, | |
| "ik": {1 : "ik_length"}, | |
| "iv": {1 : "iv_length"}, | |
| "iy_emb": {1 : "iy_emb_length"}, | |
| "ix_example": {1 : "ix_example_length"}, | |
| }, | |
| verbose=False, | |
| opset_version=16 | |
| ) | |
| class VitsModel(nn.Module): | |
| def __init__(self, vits_path): | |
| super().__init__() | |
| dict_s2 = torch.load(vits_path,map_location="cpu") | |
| self.hps = dict_s2["config"] | |
| self.hps = DictToAttrRecursive(self.hps) | |
| self.hps.model.semantic_frame_rate = "25hz" | |
| self.vq_model = SynthesizerTrn( | |
| self.hps.data.filter_length // 2 + 1, | |
| self.hps.train.segment_size // self.hps.data.hop_length, | |
| n_speakers=self.hps.data.n_speakers, | |
| **self.hps.model | |
| ) | |
| self.vq_model.eval() | |
| self.vq_model.load_state_dict(dict_s2["weight"], strict=False) | |
| def forward(self, text_seq, pred_semantic, ref_audio): | |
| refer = spectrogram_torch( | |
| ref_audio, | |
| self.hps.data.filter_length, | |
| self.hps.data.sampling_rate, | |
| self.hps.data.hop_length, | |
| self.hps.data.win_length, | |
| center=False | |
| ) | |
| return self.vq_model(pred_semantic, text_seq, refer)[0, 0] | |
| class GptSoVits(nn.Module): | |
| def __init__(self, vits, t2s): | |
| super().__init__() | |
| self.vits = vits | |
| self.t2s = t2s | |
| def forward(self, ref_seq, text_seq, ref_bert, text_bert, ref_audio, ssl_content, debug=False): | |
| pred_semantic = self.t2s(ref_seq, text_seq, ref_bert, text_bert, ssl_content) | |
| audio = self.vits(text_seq, pred_semantic, ref_audio) | |
| if debug: | |
| import onnxruntime | |
| sess = onnxruntime.InferenceSession("onnx/koharu/koharu_vits.onnx", providers=["CPU"]) | |
| audio1 = sess.run(None, { | |
| "text_seq" : text_seq.detach().cpu().numpy(), | |
| "pred_semantic" : pred_semantic.detach().cpu().numpy(), | |
| "ref_audio" : ref_audio.detach().cpu().numpy() | |
| }) | |
| return audio, audio1 | |
| return audio | |
| def export(self, ref_seq, text_seq, ref_bert, text_bert, ref_audio, ssl_content, project_name): | |
| self.t2s.export(ref_seq, text_seq, ref_bert, text_bert, ssl_content, project_name) | |
| pred_semantic = self.t2s(ref_seq, text_seq, ref_bert, text_bert, ssl_content) | |
| torch.onnx.export( | |
| self.vits, | |
| (text_seq, pred_semantic, ref_audio), | |
| f"onnx/{project_name}/{project_name}_vits.onnx", | |
| input_names=["text_seq", "pred_semantic", "ref_audio"], | |
| output_names=["audio"], | |
| dynamic_axes={ | |
| "text_seq": {1 : "text_length"}, | |
| "pred_semantic": {2 : "pred_length"}, | |
| "ref_audio": {1 : "audio_length"}, | |
| }, | |
| opset_version=17, | |
| verbose=False | |
| ) | |
| class SSLModel(nn.Module): | |
| def __init__(self): | |
| super().__init__() | |
| self.ssl = ssl_model | |
| def forward(self, ref_audio_16k): | |
| return self.ssl.model(ref_audio_16k)["last_hidden_state"].transpose(1, 2) | |
| def export(vits_path, gpt_path, project_name): | |
| vits = VitsModel(vits_path) | |
| gpt = T2SModel(gpt_path, vits) | |
| gpt_sovits = GptSoVits(vits, gpt) | |
| ssl = SSLModel() | |
| ref_seq = torch.LongTensor([cleaned_text_to_sequence(["n", "i2", "h", "ao3", ",", "w", "o3", "sh", "i4", "b", "ai2", "y", "e4"])]) | |
| text_seq = torch.LongTensor([cleaned_text_to_sequence(["w", "o3", "sh", "i4", "b", "ai2", "y", "e4", "w", "o3", "sh", "i4", "b", "ai2", "y", "e4", "w", "o3", "sh", "i4", "b", "ai2", "y", "e4"])]) | |
| ref_bert = torch.randn((ref_seq.shape[1], 1024)).float() | |
| text_bert = torch.randn((text_seq.shape[1], 1024)).float() | |
| ref_audio = torch.randn((1, 48000 * 5)).float() | |
| # ref_audio = torch.tensor([load_audio("rec.wav", 48000)]).float() | |
| ref_audio_16k = torchaudio.functional.resample(ref_audio,48000,16000).float() | |
| ref_audio_sr = torchaudio.functional.resample(ref_audio,48000,vits.hps.data.sampling_rate).float() | |
| try: | |
| os.mkdir(f"onnx/{project_name}") | |
| except: | |
| pass | |
| ssl_content = ssl(ref_audio_16k).float() | |
| debug = False | |
| if debug: | |
| a, b = gpt_sovits(ref_seq, text_seq, ref_bert, text_bert, ref_audio_sr, ssl_content, debug=debug) | |
| soundfile.write("out1.wav", a.cpu().detach().numpy(), vits.hps.data.sampling_rate) | |
| soundfile.write("out2.wav", b[0], vits.hps.data.sampling_rate) | |
| return | |
| a = gpt_sovits(ref_seq, text_seq, ref_bert, text_bert, ref_audio_sr, ssl_content).detach().cpu().numpy() | |
| soundfile.write("out.wav", a, vits.hps.data.sampling_rate) | |
| gpt_sovits.export(ref_seq, text_seq, ref_bert, text_bert, ref_audio_sr, ssl_content, project_name) | |
| MoeVSConf = { | |
| "Folder" : f"{project_name}", | |
| "Name" : f"{project_name}", | |
| "Type" : "GPT-SoVits", | |
| "Rate" : vits.hps.data.sampling_rate, | |
| "NumLayers": gpt.t2s_model.num_layers, | |
| "EmbeddingDim": gpt.t2s_model.embedding_dim, | |
| "Dict": "BasicDict", | |
| "BertPath": "chinese-roberta-wwm-ext-large", | |
| "Symbol": symbols, | |
| "AddBlank": False | |
| } | |
| MoeVSConfJson = json.dumps(MoeVSConf) | |
| with open(f"onnx/{project_name}.json", 'w') as MoeVsConfFile: | |
| json.dump(MoeVSConf, MoeVsConfFile, indent = 4) | |
| if __name__ == "__main__": | |
| try: | |
| os.mkdir("onnx") | |
| except: | |
| pass | |
| gpt_path = "GPT_weights/nahida-e25.ckpt" | |
| vits_path = "SoVITS_weights/nahida_e30_s3930.pth" | |
| exp_path = "nahida" | |
| export(vits_path, gpt_path, exp_path) | |
| # soundfile.write("out.wav", a, vits.hps.data.sampling_rate) |