Spaces:
Running
Running
| """ | |
| MOUSE Workflow - Visual Workflow Builder with UI Execution | |
| @Powered by VIDraft | |
| ✓ Visual workflow designer with drag-and-drop | |
| ✓ Import/Export JSON with copy-paste support | |
| ✓ Auto-generate UI from workflow for end-user execution | |
| """ | |
| import os, json, typing, tempfile, traceback | |
| import gradio as gr | |
| from gradio_workflowbuilder import WorkflowBuilder | |
| # Optional imports for LLM APIs | |
| try: | |
| from openai import OpenAI | |
| OPENAI_AVAILABLE = True | |
| except ImportError: | |
| OPENAI_AVAILABLE = False | |
| print("OpenAI library not available. Install with: pip install openai") | |
| # Anthropic 관련 코드 주석 처리 | |
| # try: | |
| # import anthropic | |
| # ANTHROPIC_AVAILABLE = True | |
| # except ImportError: | |
| # ANTHROPIC_AVAILABLE = False | |
| # print("Anthropic library not available. Install with: pip install anthropic") | |
| ANTHROPIC_AVAILABLE = False | |
| try: | |
| import requests | |
| REQUESTS_AVAILABLE = True | |
| except ImportError: | |
| REQUESTS_AVAILABLE = False | |
| print("Requests library not available. Install with: pip install requests") | |
| try: | |
| from huggingface_hub import HfApi, create_repo, upload_file | |
| HF_HUB_AVAILABLE = True | |
| except ImportError: | |
| HF_HUB_AVAILABLE = False | |
| print("Huggingface Hub not available. Install with: pip install huggingface-hub") | |
| # ─────────────────────────────────────────────────────────── | |
| from gradio_workflowbuilder import WorkflowBuilder as _WB | |
| if not getattr(_WB, "_patched_for_custom_palette", False): | |
| # 1) __init__ 확장 ─ custom_palette 보관 | |
| _orig_init = _WB.__init__ | |
| def _patched_init(self, *args, custom_palette=None, **kwargs): | |
| self._custom_palette = custom_palette or [] | |
| _orig_init(self, *args, **kwargs) | |
| _WB.__init__ = _patched_init | |
| # 2) config 생성 시 팔레트 합치기 | |
| cfg_method = "_get_config" if hasattr(_WB, "_get_config") else "get_config" | |
| _orig_get_cfg = getattr(_WB, cfg_method) | |
| def _patched_get_cfg(self, *args, **kwargs): | |
| cfg = _orig_get_cfg(self, *args, **kwargs) | |
| if getattr(self, "_custom_palette", None): | |
| cfg["palette"] = cfg.get("palette", []) + self._custom_palette | |
| return cfg | |
| setattr(_WB, cfg_method, _patched_get_cfg) | |
| _WB._patched_for_custom_palette = True | |
| # ─────────────────────────────────────────────────────────── | |
| import json, pathlib | |
| palette_path = pathlib.Path(__file__).parent / "best_ai_palette.json" | |
| with open(palette_path, "r", encoding="utf-8") as f: | |
| best_ai_palette = json.load(f) | |
| # ------------------------------------------------------------------- | |
| # 🛠️ 헬퍼 함수들 | |
| # ------------------------------------------------------------------- | |
| def export_pretty(data: typing.Dict[str, typing.Any]) -> str: | |
| return json.dumps(data, indent=2, ensure_ascii=False) if data else "No workflow to export" | |
| def export_file(data: typing.Dict[str, typing.Any]) -> typing.Optional[str]: | |
| """워크플로우를 JSON 파일로 내보내기""" | |
| if not data: | |
| return None | |
| try: | |
| # 임시 파일 생성 | |
| fd, path = tempfile.mkstemp(suffix=".json", prefix="workflow_", text=True) | |
| with os.fdopen(fd, "w", encoding="utf-8") as f: | |
| json.dump(data, f, ensure_ascii=False, indent=2) | |
| return path | |
| except Exception as e: | |
| print(f"Error exporting file: {e}") | |
| return None | |
| def load_json_from_text_or_file(json_text: str, file_obj) -> typing.Tuple[typing.Dict[str, typing.Any], str]: | |
| """텍스트 또는 파일에서 JSON 로드""" | |
| # 파일이 있으면 파일 우선 | |
| if file_obj is not None: | |
| try: | |
| with open(file_obj.name, "r", encoding="utf-8") as f: | |
| json_text = f.read() | |
| except Exception as e: | |
| return None, f"❌ Error reading file: {str(e)}" | |
| # JSON 텍스트가 없거나 비어있으면 | |
| if not json_text or json_text.strip() == "": | |
| return None, "No JSON data provided" | |
| try: | |
| # JSON 파싱 | |
| data = json.loads(json_text.strip()) | |
| # 데이터 검증 | |
| if not isinstance(data, dict): | |
| return None, "Invalid format: not a dictionary" | |
| # 필수 필드 확인 | |
| if 'nodes' not in data: | |
| data['nodes'] = [] | |
| if 'edges' not in data: | |
| data['edges'] = [] | |
| nodes_count = len(data.get('nodes', [])) | |
| edges_count = len(data.get('edges', [])) | |
| return data, f"✅ Loaded: {nodes_count} nodes, {edges_count} edges" | |
| except json.JSONDecodeError as e: | |
| return None, f"❌ JSON parsing error: {str(e)}" | |
| except Exception as e: | |
| return None, f"❌ Error: {str(e)}" | |
| def create_sample_workflow(example_type="basic"): | |
| """샘플 워크플로우 생성""" | |
| if example_type == "basic": | |
| # 기본 예제: 간단한 Q&A - VIDraft 사용 | |
| return { | |
| "nodes": [ | |
| { # 🆕 캔버스에 기본으로 배치될 Best-AI 노드 | |
| "id": "best_ai_default", | |
| "type": "llmNode", | |
| "position": {"x": 80, "y": 40}, | |
| "data": { | |
| "label": "AI Processing", | |
| "template": { | |
| "provider": {"value": "VIDraft"}, | |
| "model": {"value": "Gemma-3-r1984-27B"}, | |
| "temperature": {"value": 0.7}, | |
| "system_prompt":{"value": "You are a helpful assistant."} | |
| } | |
| } | |
| }, | |
| { | |
| "id": "input_1", | |
| "type": "ChatInput", | |
| "position": {"x": 100, "y": 200}, | |
| "data": { | |
| "label": "User Question", | |
| "template": { | |
| "input_value": {"value": "What is the capital of Korea?"} | |
| } | |
| } | |
| }, | |
| { | |
| "id": "llm_1", | |
| "type": "llmNode", | |
| "position": {"x": 400, "y": 200}, | |
| "data": { | |
| "label": "AI Processing", | |
| "template": { | |
| "provider": {"value": "VIDraft"}, # 기본값을 VIDraft로 변경 | |
| "model": {"value": "Gemma-3-r1984-27B"}, | |
| "temperature": {"value": 0.7}, | |
| "system_prompt": {"value": "You are a helpful assistant."} | |
| } | |
| } | |
| }, | |
| { | |
| "id": "output_1", | |
| "type": "ChatOutput", | |
| "position": {"x": 700, "y": 200}, | |
| "data": {"label": "Answer"} | |
| } | |
| ], | |
| "edges": [ | |
| {"id": "e1", "source": "input_1", "target": "llm_1"}, | |
| {"id": "e2", "source": "llm_1", "target": "output_1"} | |
| ] | |
| } | |
| elif example_type == "vidraft": | |
| # VIDraft 예제 | |
| return { | |
| "nodes": [ | |
| { | |
| "id": "input_1", | |
| "type": "ChatInput", | |
| "position": {"x": 100, "y": 200}, | |
| "data": { | |
| "label": "User Input", | |
| "template": { | |
| "input_value": {"value": "AI와 머신러닝의 차이점을 설명해주세요."} | |
| } | |
| } | |
| }, | |
| { | |
| "id": "llm_1", | |
| "type": "llmNode", | |
| "position": {"x": 400, "y": 200}, | |
| "data": { | |
| "label": "VIDraft AI (Gemma)", | |
| "template": { | |
| "provider": {"value": "VIDraft"}, | |
| "model": {"value": "Gemma-3-r1984-27B"}, | |
| "temperature": {"value": 0.8}, | |
| "system_prompt": {"value": "당신은 전문적이고 친절한 AI 교육자입니다. 복잡한 개념을 쉽게 설명해주세요."} | |
| } | |
| } | |
| }, | |
| { | |
| "id": "output_1", | |
| "type": "ChatOutput", | |
| "position": {"x": 700, "y": 200}, | |
| "data": {"label": "AI Explanation"} | |
| } | |
| ], | |
| "edges": [ | |
| {"id": "e1", "source": "input_1", "target": "llm_1"}, | |
| {"id": "e2", "source": "llm_1", "target": "output_1"} | |
| ] | |
| } | |
| elif example_type == "multi_input": | |
| # 다중 입력 예제 | |
| return { | |
| "nodes": [ | |
| { | |
| "id": "name_input", | |
| "type": "textInput", | |
| "position": {"x": 100, "y": 100}, | |
| "data": { | |
| "label": "Your Name", | |
| "template": { | |
| "input_value": {"value": "John"} | |
| } | |
| } | |
| }, | |
| { | |
| "id": "topic_input", | |
| "type": "textInput", | |
| "position": {"x": 100, "y": 250}, | |
| "data": { | |
| "label": "Topic", | |
| "template": { | |
| "input_value": {"value": "Python programming"} | |
| } | |
| } | |
| }, | |
| { | |
| "id": "level_input", | |
| "type": "textInput", | |
| "position": {"x": 100, "y": 400}, | |
| "data": { | |
| "label": "Skill Level", | |
| "template": { | |
| "input_value": {"value": "beginner"} | |
| } | |
| } | |
| }, | |
| { | |
| "id": "combiner", | |
| "type": "textNode", | |
| "position": {"x": 350, "y": 250}, | |
| "data": { | |
| "label": "Combine Inputs", | |
| "template": { | |
| "text": {"value": "Create a personalized learning plan"} | |
| } | |
| } | |
| }, | |
| { | |
| "id": "llm_1", | |
| "type": "llmNode", | |
| "position": {"x": 600, "y": 250}, | |
| "data": { | |
| "label": "Generate Learning Plan", | |
| "template": { | |
| "provider": {"value": "VIDraft"}, # 기본값을 VIDraft로 변경 | |
| "model": {"value": "Gemma-3-r1984-27B"}, | |
| "temperature": {"value": 0.7}, | |
| "system_prompt": {"value": "You are an expert educational consultant. Create personalized learning plans based on the user's name, topic of interest, and skill level."} | |
| } | |
| } | |
| }, | |
| { | |
| "id": "output_1", | |
| "type": "ChatOutput", | |
| "position": {"x": 900, "y": 250}, | |
| "data": {"label": "Your Learning Plan"} | |
| } | |
| ], | |
| "edges": [ | |
| {"id": "e1", "source": "name_input", "target": "combiner"}, | |
| {"id": "e2", "source": "topic_input", "target": "combiner"}, | |
| {"id": "e3", "source": "level_input", "target": "combiner"}, | |
| {"id": "e4", "source": "combiner", "target": "llm_1"}, | |
| {"id": "e5", "source": "llm_1", "target": "output_1"} | |
| ] | |
| } | |
| elif example_type == "chain": | |
| # 체인 처리 예제 | |
| return { | |
| "nodes": [ | |
| { | |
| "id": "input_1", | |
| "type": "ChatInput", | |
| "position": {"x": 50, "y": 200}, | |
| "data": { | |
| "label": "Original Text", | |
| "template": { | |
| "input_value": {"value": "The quick brown fox jumps over the lazy dog."} | |
| } | |
| } | |
| }, | |
| { | |
| "id": "translator", | |
| "type": "llmNode", | |
| "position": {"x": 300, "y": 200}, | |
| "data": { | |
| "label": "Translate to Korean", | |
| "template": { | |
| "provider": {"value": "VIDraft"}, | |
| "model": {"value": "Gemma-3-r1984-27B"}, | |
| "temperature": {"value": 0.3}, | |
| "system_prompt": {"value": "You are a professional translator. Translate the given English text to Korean accurately."} | |
| } | |
| } | |
| }, | |
| { | |
| "id": "analyzer", | |
| "type": "llmNode", | |
| "position": {"x": 600, "y": 200}, | |
| "data": { | |
| "label": "Analyze Translation", | |
| "template": { | |
| "provider": {"value": "OpenAI"}, | |
| "model": {"value": "gpt-4.1-mini"}, | |
| "temperature": {"value": 0.5}, | |
| "system_prompt": {"value": "You are a linguistic expert. Analyze the Korean translation and explain its nuances and cultural context."} | |
| } | |
| } | |
| }, | |
| { | |
| "id": "output_translation", | |
| "type": "ChatOutput", | |
| "position": {"x": 450, "y": 350}, | |
| "data": {"label": "Korean Translation"} | |
| }, | |
| { | |
| "id": "output_analysis", | |
| "type": "ChatOutput", | |
| "position": {"x": 900, "y": 200}, | |
| "data": {"label": "Translation Analysis"} | |
| } | |
| ], | |
| "edges": [ | |
| {"id": "e1", "source": "input_1", "target": "translator"}, | |
| {"id": "e2", "source": "translator", "target": "analyzer"}, | |
| {"id": "e3", "source": "translator", "target": "output_translation"}, | |
| {"id": "e4", "source": "analyzer", "target": "output_analysis"} | |
| ] | |
| } | |
| # 기본값은 basic | |
| return create_sample_workflow("basic") | |
| # 배포를 위한 독립 앱 생성 함수 | |
| def generate_standalone_app(workflow_data: dict, app_name: str, app_description: str) -> str: | |
| """워크플로우를 독립적인 Gradio 앱으로 변환""" | |
| # JSON 데이터를 문자열로 변환 | |
| workflow_json = json.dumps(workflow_data, indent=2) | |
| app_code = f'''""" | |
| {app_name} | |
| {app_description} | |
| Generated by MOUSE Workflow | |
| """ | |
| import os | |
| import json | |
| import gradio as gr | |
| import requests | |
| # Workflow configuration | |
| WORKFLOW_DATA = {workflow_json} | |
| def execute_workflow(*input_values): | |
| """Execute the workflow with given inputs""" | |
| # API keys from environment | |
| vidraft_token = os.getenv("FRIENDLI_TOKEN") | |
| openai_key = os.getenv("OPENAI_API_KEY") | |
| nodes = WORKFLOW_DATA.get("nodes", []) | |
| edges = WORKFLOW_DATA.get("edges", []) | |
| results = {{}} | |
| # Get input nodes | |
| input_nodes = [n for n in nodes if n.get("type") in ["ChatInput", "textInput", "Input", "numberInput"]] | |
| # Map inputs to node IDs | |
| for i, node in enumerate(input_nodes): | |
| if i < len(input_values): | |
| results[node["id"]] = input_values[i] | |
| # Process nodes | |
| for node in nodes: | |
| node_id = node.get("id") | |
| node_type = node.get("type", "") | |
| node_data = node.get("data", {{}}) | |
| template = node_data.get("template", {{}}) | |
| if node_type == "textNode": | |
| # Combine connected inputs | |
| base_text = template.get("text", {{}}).get("value", "") | |
| connected_inputs = [] | |
| for edge in edges: | |
| if edge.get("target") == node_id: | |
| source_id = edge.get("source") | |
| if source_id in results: | |
| connected_inputs.append(f"{{source_id}}: {{results[source_id]}}") | |
| if connected_inputs: | |
| results[node_id] = f"{{base_text}}\\n\\nInputs:\\n" + "\\n".join(connected_inputs) | |
| else: | |
| results[node_id] = base_text | |
| elif node_type in ["llmNode", "OpenAIModel", "ChatModel"]: | |
| # Get provider and model - VIDraft as default | |
| provider = template.get("provider", {{}}).get("value", "VIDraft") | |
| if provider not in ["VIDraft", "OpenAI"]: | |
| provider = "VIDraft" # Default to VIDraft | |
| temperature = template.get("temperature", {{}}).get("value", 0.7) | |
| system_prompt = template.get("system_prompt", {{}}).get("value", "") | |
| # Get input text | |
| input_text = "" | |
| for edge in edges: | |
| if edge.get("target") == node_id: | |
| source_id = edge.get("source") | |
| if source_id in results: | |
| input_text = results[source_id] | |
| break | |
| # Call API | |
| if provider == "OpenAI" and openai_key: | |
| try: | |
| from openai import OpenAI | |
| client = OpenAI(api_key=openai_key) | |
| messages = [] | |
| if system_prompt: | |
| messages.append({{"role": "system", "content": system_prompt}}) | |
| messages.append({{"role": "user", "content": input_text}}) | |
| response = client.chat.completions.create( | |
| model="gpt-4.1-mini", | |
| messages=messages, | |
| temperature=temperature, | |
| max_tokens=1000 | |
| ) | |
| results[node_id] = response.choices[0].message.content | |
| except Exception as e: | |
| results[node_id] = f"[OpenAI Error: {{str(e)}}]" | |
| elif provider == "VIDraft" and vidraft_token: | |
| try: | |
| headers = {{ | |
| "Authorization": f"Bearer {{vidraft_token}}", | |
| "Content-Type": "application/json" | |
| }} | |
| messages = [] | |
| if system_prompt: | |
| messages.append({{"role": "system", "content": system_prompt}}) | |
| messages.append({{"role": "user", "content": input_text}}) | |
| payload = {{ | |
| "model": "dep89a2fld32mcm", | |
| "messages": messages, | |
| "max_tokens": 16384, | |
| "temperature": temperature, | |
| "top_p": 0.8, | |
| "stream": False | |
| }} | |
| response = requests.post( | |
| "https://api.friendli.ai/dedicated/v1/chat/completions", | |
| headers=headers, | |
| json=payload, | |
| timeout=30 | |
| ) | |
| if response.status_code == 200: | |
| results[node_id] = response.json()["choices"][0]["message"]["content"] | |
| else: | |
| results[node_id] = f"[VIDraft Error: {{response.status_code}}]" | |
| except Exception as e: | |
| results[node_id] = f"[VIDraft Error: {{str(e)}}]" | |
| else: | |
| # Show which API key is missing | |
| if provider == "OpenAI": | |
| results[node_id] = "[OpenAI API key not found. Please set OPENAI_API_KEY in Space secrets]" | |
| elif provider == "VIDraft": | |
| results[node_id] = "[VIDraft API key not found. Please set FRIENDLI_TOKEN in Space secrets]" | |
| else: | |
| results[node_id] = f"[No API key found for {{provider}}. Using simulated response: {{input_text[:50]}}...]" | |
| elif node_type in ["ChatOutput", "textOutput", "Output"]: | |
| # Get connected result | |
| for edge in edges: | |
| if edge.get("target") == node_id: | |
| source_id = edge.get("source") | |
| if source_id in results: | |
| results[node_id] = results[source_id] | |
| break | |
| # Return outputs | |
| output_nodes = [n for n in nodes if n.get("type") in ["ChatOutput", "textOutput", "Output"]] | |
| return [results.get(n["id"], "") for n in output_nodes] | |
| # Build UI | |
| with gr.Blocks(title="{app_name}", theme=gr.themes.Soft()) as demo: | |
| gr.Markdown("# {app_name}") | |
| gr.Markdown("{app_description}") | |
| # API Status Check | |
| vidraft_token = os.getenv("FRIENDLI_TOKEN") | |
| openai_key = os.getenv("OPENAI_API_KEY") | |
| with gr.Accordion("🔑 API Status", open=False): | |
| if vidraft_token: | |
| gr.Markdown("✅ **VIDraft API**: Connected (Gemma-3-r1984-27B)") | |
| else: | |
| gr.Markdown("❌ **VIDraft API**: Not configured") | |
| if openai_key: | |
| gr.Markdown("✅ **OpenAI API**: Connected (gpt-4.1-mini)") | |
| else: | |
| gr.Markdown("⚠️ **OpenAI API**: Not configured (optional)") | |
| if not vidraft_token: | |
| gr.Markdown(""" | |
| **⚠️ Important**: Please add FRIENDLI_TOKEN to Space secrets for the app to work properly. | |
| Go to: Space settings → Repository secrets → Add secret | |
| """) | |
| elif not openai_key: | |
| gr.Markdown(""" | |
| **💡 Tip**: The app will work with VIDraft alone. Add OPENAI_API_KEY if you need OpenAI features. | |
| """) | |
| else: | |
| gr.Markdown("**✨ All APIs configured! Your app is fully functional.**") | |
| # Extract nodes | |
| nodes = WORKFLOW_DATA.get("nodes", []) | |
| input_nodes = [n for n in nodes if n.get("type") in ["ChatInput", "textInput", "Input", "numberInput"]] | |
| output_nodes = [n for n in nodes if n.get("type") in ["ChatOutput", "textOutput", "Output"]] | |
| # Create inputs | |
| inputs = [] | |
| if input_nodes: | |
| gr.Markdown("### 📥 Inputs") | |
| for node in input_nodes: | |
| label = node.get("data", {{}}).get("label", node.get("id")) | |
| template = node.get("data", {{}}).get("template", {{}}) | |
| default_value = template.get("input_value", {{}}).get("value", "") | |
| if node.get("type") == "numberInput": | |
| inp = gr.Number(label=label, value=float(default_value) if default_value else 0) | |
| else: | |
| inp = gr.Textbox(label=label, value=default_value, lines=2) | |
| inputs.append(inp) | |
| # Execute button | |
| btn = gr.Button("🚀 Execute Workflow", variant="primary") | |
| # Create outputs | |
| outputs = [] | |
| if output_nodes: | |
| gr.Markdown("### 📤 Outputs") | |
| for node in output_nodes: | |
| label = node.get("data", {{}}).get("label", node.get("id")) | |
| out = gr.Textbox(label=label, interactive=False, lines=3) | |
| outputs.append(out) | |
| # Connect | |
| btn.click(fn=execute_workflow, inputs=inputs, outputs=outputs) | |
| gr.Markdown("---") | |
| gr.Markdown("*Powered by MOUSE Workflow*") | |
| if __name__ == "__main__": | |
| demo.launch() | |
| ''' | |
| return app_code | |
| def generate_requirements_txt() -> str: | |
| """Generate requirements.txt for the standalone app""" | |
| return """gradio==5.34.2 | |
| openai | |
| requests | |
| """ | |
| def deploy_to_huggingface(workflow_data: dict, app_name: str, app_description: str, | |
| hf_token: str, space_name: str, is_private: bool = False, | |
| api_keys: dict = None) -> dict: | |
| """Deploy workflow to Hugging Face Space with API keys""" | |
| if not HF_HUB_AVAILABLE: | |
| return {"success": False, "error": "huggingface-hub library not installed"} | |
| if api_keys is None: | |
| api_keys = {} | |
| try: | |
| # Initialize HF API | |
| api = HfApi(token=hf_token) | |
| # Create repository | |
| repo_id = api.create_repo( | |
| repo_id=space_name, | |
| repo_type="space", | |
| space_sdk="gradio", | |
| private=is_private, | |
| exist_ok=True | |
| ) | |
| # Detect which providers are used in the workflow | |
| providers_used = set() | |
| nodes = workflow_data.get("nodes", []) | |
| for node in nodes: | |
| if node.get("type") in ["llmNode", "OpenAIModel", "ChatModel"]: | |
| template = node.get("data", {}).get("template", {}) | |
| provider = template.get("provider", {}).get("value", "") | |
| if provider: | |
| providers_used.add(provider) | |
| # Generate files | |
| app_code = generate_standalone_app(workflow_data, app_name, app_description) | |
| requirements = generate_requirements_txt() | |
| # README with API setup instructions | |
| api_status = [] | |
| if "FRIENDLI_TOKEN" in api_keys and api_keys["FRIENDLI_TOKEN"]: | |
| api_status.append("- **FRIENDLI_TOKEN**: ✅ Will be configured automatically") | |
| else: | |
| api_status.append("- **FRIENDLI_TOKEN**: ⚠️ Not provided (VIDraft won't work)") | |
| if "OPENAI_API_KEY" in api_keys and api_keys["OPENAI_API_KEY"]: | |
| api_status.append("- **OPENAI_API_KEY**: ✅ Will be configured automatically") | |
| elif "OpenAI" in providers_used: | |
| api_status.append("- **OPENAI_API_KEY**: ❌ Required but not provided") | |
| readme = f"""--- | |
| title: {app_name} | |
| emoji: 🐭 | |
| colorFrom: blue | |
| colorTo: green | |
| sdk: gradio | |
| sdk_version: 5.34.2 | |
| app_file: app.py | |
| pinned: false | |
| --- | |
| # {app_name} | |
| {app_description} | |
| ## 🔑 API Configuration Status | |
| {chr(10).join(api_status)} | |
| ## 📝 Providers Used in This Workflow | |
| {', '.join(providers_used) if providers_used else 'No LLM providers detected'} | |
| ## 🚀 Default Configuration | |
| This app is configured to use **VIDraft (Gemma-3-r1984-27B)** as the default LLM provider for optimal performance. | |
| --- | |
| Generated by MOUSE Workflow | |
| """ | |
| # Upload files | |
| api.upload_file( | |
| path_or_fileobj=app_code.encode(), | |
| path_in_repo="app.py", | |
| repo_id=repo_id.repo_id, | |
| repo_type="space" | |
| ) | |
| api.upload_file( | |
| path_or_fileobj=requirements.encode(), | |
| path_in_repo="requirements.txt", | |
| repo_id=repo_id.repo_id, | |
| repo_type="space" | |
| ) | |
| api.upload_file( | |
| path_or_fileobj=readme.encode(), | |
| path_in_repo="README.md", | |
| repo_id=repo_id.repo_id, | |
| repo_type="space" | |
| ) | |
| # Add all provided API keys as secrets | |
| added_secrets = [] | |
| failed_secrets = [] | |
| for key_name, key_value in api_keys.items(): | |
| if key_value: # Only add non-empty keys | |
| try: | |
| api.add_space_secret( | |
| repo_id=repo_id.repo_id, | |
| key=key_name, | |
| value=key_value | |
| ) | |
| added_secrets.append(key_name) | |
| except Exception as e: | |
| failed_secrets.append(f"{key_name}: {str(e)}") | |
| print(f"Warning: Could not add {key_name} secret: {e}") | |
| space_url = f"https://huggingface.co/spaces/{repo_id.repo_id}" | |
| return { | |
| "success": True, | |
| "space_url": space_url, | |
| "message": f"Successfully deployed to {space_url}", | |
| "added_secrets": added_secrets, | |
| "failed_secrets": failed_secrets, | |
| "providers_used": list(providers_used) | |
| } | |
| except Exception as e: | |
| return { | |
| "success": False, | |
| "error": str(e) | |
| } | |
| # UI 실행을 위한 실제 워크플로우 실행 함수 | |
| def execute_workflow_simple(workflow_data: dict, input_values: dict) -> dict: | |
| """워크플로우 실제 실행""" | |
| import traceback | |
| # API 키 확인 | |
| vidraft_token = os.getenv("FRIENDLI_TOKEN") # VIDraft/Friendli token | |
| openai_key = os.getenv("OPENAI_API_KEY") | |
| # anthropic_key = os.getenv("ANTHROPIC_API_KEY") # 주석 처리 | |
| # OpenAI 라이브러리 확인 | |
| try: | |
| from openai import OpenAI | |
| openai_available = True | |
| except ImportError: | |
| openai_available = False | |
| print("OpenAI library not available") | |
| # Anthropic 라이브러리 확인 - 주석 처리 | |
| # try: | |
| # import anthropic | |
| # anthropic_available = True | |
| # except ImportError: | |
| # anthropic_available = False | |
| # print("Anthropic library not available") | |
| anthropic_available = False | |
| results = {} | |
| nodes = workflow_data.get("nodes", []) | |
| edges = workflow_data.get("edges", []) | |
| # 노드를 순서대로 처리 | |
| for node in nodes: | |
| node_id = node.get("id") | |
| node_type = node.get("type", "") | |
| node_data = node.get("data", {}) | |
| try: | |
| if node_type in ["ChatInput", "textInput", "Input"]: | |
| # UI에서 제공된 입력값 사용 | |
| if node_id in input_values: | |
| results[node_id] = input_values[node_id] | |
| else: | |
| # 기본값 사용 | |
| template = node_data.get("template", {}) | |
| default_value = template.get("input_value", {}).get("value", "") | |
| results[node_id] = default_value | |
| elif node_type == "textNode": | |
| # 텍스트 노드는 연결된 모든 입력을 결합 | |
| template = node_data.get("template", {}) | |
| base_text = template.get("text", {}).get("value", "") | |
| # 연결된 입력들 수집 | |
| connected_inputs = [] | |
| for edge in edges: | |
| if edge.get("target") == node_id: | |
| source_id = edge.get("source") | |
| if source_id in results: | |
| connected_inputs.append(f"{source_id}: {results[source_id]}") | |
| # 결합된 텍스트 생성 | |
| if connected_inputs: | |
| combined_text = f"{base_text}\n\nInputs:\n" + "\n".join(connected_inputs) | |
| results[node_id] = combined_text | |
| else: | |
| results[node_id] = base_text | |
| elif node_type in ["llmNode", "OpenAIModel", "ChatModel"]: | |
| # LLM 노드 처리 | |
| template = node_data.get("template", {}) | |
| # 프로바이더 정보 추출 - VIDraft 또는 OpenAI만 허용 | |
| provider_info = template.get("provider", {}) | |
| provider = provider_info.get("value", "VIDraft") if isinstance(provider_info, dict) else "VIDraft" # 기본값 VIDraft | |
| # provider가 VIDraft 또는 OpenAI가 아닌 경우 VIDraft로 기본 설정 | |
| if provider not in ["VIDraft", "OpenAI"]: | |
| provider = "VIDraft" | |
| # 모델 정보 추출 | |
| if provider == "OpenAI": | |
| # OpenAI는 gpt-4.1-mini로 고정 | |
| model = "gpt-4.1-mini" | |
| elif provider == "VIDraft": | |
| # VIDraft는 Gemma-3-r1984-27B로 고정 | |
| model = "Gemma-3-r1984-27B" | |
| else: | |
| model = "Gemma-3-r1984-27B" # 기본값 VIDraft 모델 | |
| # 온도 정보 추출 | |
| temp_info = template.get("temperature", {}) | |
| temperature = temp_info.get("value", 0.7) if isinstance(temp_info, dict) else 0.7 | |
| # 시스템 프롬프트 추출 | |
| prompt_info = template.get("system_prompt", {}) | |
| system_prompt = prompt_info.get("value", "") if isinstance(prompt_info, dict) else "" | |
| # 입력 텍스트 찾기 | |
| input_text = "" | |
| for edge in edges: | |
| if edge.get("target") == node_id: | |
| source_id = edge.get("source") | |
| if source_id in results: | |
| input_text = results[source_id] | |
| break | |
| # 실제 API 호출 | |
| if provider == "OpenAI" and openai_key and openai_available: | |
| try: | |
| client = OpenAI(api_key=openai_key) | |
| messages = [] | |
| if system_prompt: | |
| messages.append({"role": "system", "content": system_prompt}) | |
| messages.append({"role": "user", "content": input_text}) | |
| response = client.chat.completions.create( | |
| model="gpt-4.1-mini", # 고정된 모델명 | |
| messages=messages, | |
| temperature=temperature, | |
| max_tokens=1000 | |
| ) | |
| results[node_id] = response.choices[0].message.content | |
| except Exception as e: | |
| results[node_id] = f"[OpenAI Error: {str(e)}]" | |
| # Anthropic 관련 코드 주석 처리 | |
| # elif provider == "Anthropic" and anthropic_key and anthropic_available: | |
| # try: | |
| # client = anthropic.Anthropic(api_key=anthropic_key) | |
| # | |
| # message = client.messages.create( | |
| # model="claude-3-haiku-20240307", | |
| # max_tokens=1000, | |
| # temperature=temperature, | |
| # system=system_prompt if system_prompt else None, | |
| # messages=[{"role": "user", "content": input_text}] | |
| # ) | |
| # | |
| # results[node_id] = message.content[0].text | |
| # | |
| # except Exception as e: | |
| # results[node_id] = f"[Anthropic Error: {str(e)}]" | |
| elif provider == "VIDraft" and vidraft_token: | |
| try: | |
| import requests | |
| headers = { | |
| "Authorization": f"Bearer {vidraft_token}", | |
| "Content-Type": "application/json" | |
| } | |
| # 메시지 구성 | |
| messages = [] | |
| if system_prompt: | |
| messages.append({"role": "system", "content": system_prompt}) | |
| messages.append({"role": "user", "content": input_text}) | |
| payload = { | |
| "model": "dep89a2fld32mcm", # VIDraft 모델 ID | |
| "messages": messages, | |
| "max_tokens": 16384, | |
| "temperature": temperature, | |
| "top_p": 0.8, | |
| "stream": False # 동기 실행을 위해 False로 설정 | |
| } | |
| # VIDraft API endpoint | |
| response = requests.post( | |
| "https://api.friendli.ai/dedicated/v1/chat/completions", | |
| headers=headers, | |
| json=payload, | |
| timeout=30 | |
| ) | |
| if response.status_code == 200: | |
| response_json = response.json() | |
| results[node_id] = response_json["choices"][0]["message"]["content"] | |
| else: | |
| results[node_id] = f"[VIDraft API Error: {response.status_code} - {response.text}]" | |
| except Exception as e: | |
| results[node_id] = f"[VIDraft Error: {str(e)}]" | |
| else: | |
| # API 키가 없는 경우 시뮬레이션 | |
| results[node_id] = f"[Simulated {provider} Response to: {input_text[:50]}...]" | |
| elif node_type in ["ChatOutput", "textOutput", "Output"]: | |
| # 출력 노드는 연결된 노드의 결과를 가져옴 | |
| for edge in edges: | |
| if edge.get("target") == node_id: | |
| source_id = edge.get("source") | |
| if source_id in results: | |
| results[node_id] = results[source_id] | |
| break | |
| except Exception as e: | |
| results[node_id] = f"[Node Error: {str(e)}]" | |
| print(f"Error processing node {node_id}: {traceback.format_exc()}") | |
| return results | |
| # ------------------------------------------------------------------- | |
| # 🎨 CSS | |
| # ------------------------------------------------------------------- | |
| CSS = """ | |
| .main-container{max-width:1600px;margin:0 auto;} | |
| .workflow-section{margin-bottom:2rem;min-height:500px;} | |
| .button-row{display:flex;gap:1rem;justify-content:center;margin:1rem 0;} | |
| .status-box{ | |
| padding:10px;border-radius:5px;margin-top:10px; | |
| background:#f0f9ff;border:1px solid #3b82f6;color:#1e40af; | |
| } | |
| .component-description{ | |
| padding:24px;background:linear-gradient(135deg,#f8fafc 0%,#e2e8f0 100%); | |
| border-left:4px solid #3b82f6;border-radius:12px; | |
| box-shadow:0 2px 8px rgba(0,0,0,.05);margin:16px 0; | |
| } | |
| .workflow-container{position:relative;} | |
| .ui-execution-section{ | |
| background:linear-gradient(135deg,#f0fdf4 0%,#dcfce7 100%); | |
| padding:24px;border-radius:12px;margin:24px 0; | |
| border:1px solid #86efac; | |
| } | |
| .powered-by{ | |
| text-align:center;color:#64748b;font-size:14px; | |
| margin-top:8px;font-style:italic; | |
| } | |
| .sample-buttons{ | |
| display:grid;grid-template-columns:1fr 1fr;gap:0.5rem; | |
| margin-top:0.5rem; | |
| } | |
| .deploy-section{ | |
| background:linear-gradient(135deg,#fef3c7 0%,#fde68a 100%); | |
| padding:24px;border-radius:12px;margin:24px 0; | |
| border:1px solid #fbbf24; | |
| } | |
| .save-indicator{ | |
| text-align:right; | |
| font-size:14px; | |
| color:#16a34a; | |
| padding:8px 16px; | |
| background:#f0fdf4; | |
| border-radius:20px; | |
| display:inline-block; | |
| margin-left:auto; | |
| } | |
| .workflow-info{ | |
| font-size:14px; | |
| color:#475569; | |
| background:#f8fafc; | |
| padding:8px 16px; | |
| border-radius:8px; | |
| display:inline-block; | |
| margin-bottom:16px; | |
| } | |
| """ | |
| # ------------------------------------------------------------------- | |
| # 🖥️ Gradio 앱 | |
| # ------------------------------------------------------------------- | |
| with gr.Blocks(title="🐭 MOUSE Workflow", theme=gr.themes.Soft(), css=CSS) as demo: | |
| with gr.Column(elem_classes=["main-container"]): | |
| gr.Markdown("# 🐭 MOUSE Workflow") | |
| gr.Markdown("**Visual Workflow Builder with Interactive UI Execution**") | |
| gr.HTML('<p class="powered-by">@Powered by VIDraft & Huggingface gradio</p>') | |
| html_content = """<div class="component-description"> | |
| <p style="font-size:16px;margin:0;">Build sophisticated workflows visually • Import/Export JSON • Generate interactive UI for end-users • Default LLM: VIDraft (Gemma-3-r1984-27B)</p> | |
| <p style="font-size:14px;margin-top:8px;color:#64748b;">💡 Tip: Your workflow is automatically saved as you make changes. The JSON preview updates in real-time!</p> | |
| </div>""" | |
| gr.HTML(html_content) | |
| # API Status Display | |
| with gr.Accordion("🔌 API Status", open=False): | |
| gr.Markdown(f""" | |
| **Available APIs:** | |
| - FRIENDLI_TOKEN (VIDraft): {'✅ Connected' if os.getenv("FRIENDLI_TOKEN") else '❌ Not found'} | |
| - OPENAI_API_KEY: {'✅ Connected' if os.getenv("OPENAI_API_KEY") else '❌ Not found'} | |
| **Libraries:** | |
| - OpenAI: {'✅ Installed' if OPENAI_AVAILABLE else '❌ Not installed'} | |
| - Requests: {'✅ Installed' if REQUESTS_AVAILABLE else '❌ Not installed'} | |
| - Hugging Face Hub: {'✅ Installed' if HF_HUB_AVAILABLE else '❌ Not installed (needed for deployment)'} | |
| **Available Models:** | |
| - OpenAI: gpt-4.1-mini (fixed) | |
| - VIDraft: Gemma-3-r1984-27B (model ID: dep89a2fld32mcm) | |
| **Sample Workflows:** | |
| - Basic Q&A: Simple question-answer flow (VIDraft) | |
| - VIDraft: Korean language example with Gemma model | |
| - Multi-Input: Combine multiple inputs for personalized output (VIDraft) | |
| - Chain: Sequential processing with multiple outputs (VIDraft + OpenAI) | |
| **Note**: All examples prioritize VIDraft for optimal performance. Friendli API token will be automatically configured during deployment. | |
| """) | |
| # State for storing workflow data | |
| loaded_data = gr.State(None) | |
| trigger_update = gr.State(False) | |
| save_status = gr.State("Ready") | |
| # ─── Dynamic Workflow Container ─ | |
| # ─── Dynamic Workflow Container ─── | |
| with gr.Column(elem_classes=["workflow-container"]): | |
| # Auto-save status indicator | |
| with gr.Row(): | |
| gr.Markdown("### 🎨 Visual Workflow Designer") | |
| save_indicator = gr.Markdown("💾 Auto-save: Ready", | |
| elem_classes=["save-indicator"]) | |
| def render_workflow(data, trigger): | |
| """ | |
| 동적으로 WorkflowBuilder 렌더링 + 10초 자동 저장 | |
| """ | |
| workflow_value = data if data else {"nodes": [], "edges": []} | |
| # WorkflowBuilder (🔌 custom_palette 제거) | |
| wb = WorkflowBuilder( | |
| label="", | |
| info="Drag nodes → Connect edges → Edit properties → Auto-save!", | |
| value=workflow_value, | |
| elem_id="main_workflow", | |
| custom_palette=best_ai_palette # ← 새로 추가 | |
| ) | |
| # ---------- 저장 로직 ---------- | |
| def periodic_save(workflow_data): | |
| import json, time, copy | |
| if isinstance(workflow_data, str): | |
| try: | |
| workflow_data = json.loads(workflow_data) | |
| except json.JSONDecodeError: | |
| workflow_data = {"nodes": [], "edges": []} | |
| ts = time.strftime("%H:%M:%S") | |
| return copy.deepcopy(workflow_data), \ | |
| f"💾 Auto-save: Saved ✓ ({ts})" | |
| # 1) 즉각 저장 | |
| wb.change( | |
| fn=periodic_save, | |
| inputs=[wb], | |
| outputs=[loaded_data, save_indicator] | |
| ) | |
| # 2) 5초 주기 백업 | |
| auto_timer = gr.Timer(10) | |
| auto_timer.tick( | |
| fn=periodic_save, | |
| inputs=[wb], | |
| outputs=[loaded_data, save_indicator] | |
| ) | |
| # ------------------------------- | |
| return wb | |
| # ─── Import Section ─── | |
| with gr.Accordion("📥 Import Workflow", open=True): | |
| gr.Markdown("*Load an existing workflow from JSON or start with a sample template*") | |
| with gr.Row(): | |
| with gr.Column(scale=2): | |
| import_json_text = gr.Code( | |
| language="json", | |
| label="Paste JSON here", | |
| lines=8, | |
| value='{\n "nodes": [],\n "edges": []\n}' | |
| ) | |
| with gr.Column(scale=1): | |
| file_upload = gr.File( | |
| label="Or upload JSON file", | |
| file_types=[".json"], | |
| type="filepath" | |
| ) | |
| btn_load = gr.Button("📥 Load Workflow", variant="primary", size="lg") | |
| # Sample buttons | |
| gr.Markdown("**Sample Workflows:**") | |
| with gr.Row(): | |
| btn_sample_basic = gr.Button("🎯 Basic Q&A", variant="secondary", scale=1) | |
| btn_sample_vidraft = gr.Button("🤖 VIDraft", variant="secondary", scale=1) | |
| with gr.Row(): | |
| btn_sample_multi = gr.Button("📝 Multi-Input", variant="secondary", scale=1) | |
| btn_sample_chain = gr.Button("🔗 Chain", variant="secondary", scale=1) | |
| # Status | |
| status_text = gr.Textbox( | |
| label="Status", | |
| value="Ready", | |
| elem_classes=["status-box"], | |
| interactive=False | |
| ) | |
| # ─── Export Section ─── | |
| gr.Markdown("## 💾 Export / Live Preview") | |
| gr.Markdown("*Your workflow is automatically saved. The JSON below shows your current workflow in real-time.*") | |
| # Workflow info display | |
| workflow_info = gr.Markdown("📊 Empty workflow", elem_classes=["workflow-info"]) | |
| with gr.Row(): | |
| with gr.Column(scale=3): | |
| export_preview = gr.Code( | |
| language="json", | |
| label="Current Workflow JSON (Live Preview)", | |
| lines=8, | |
| interactive=False | |
| ) | |
| gr.Markdown("*💡 This JSON updates automatically as you modify the workflow above*") | |
| with gr.Column(scale=1): | |
| btn_preview = gr.Button("🔄 Force Refresh", size="lg", variant="secondary") | |
| btn_download = gr.DownloadButton( | |
| "💾 Download JSON", | |
| size="lg", | |
| variant="primary", | |
| visible=True | |
| ) | |
| # ─── Deploy Section ─── | |
| with gr.Accordion("🚀 Deploy to Hugging Face Space", open=False, elem_classes=["deploy-section"]): | |
| gr.Markdown(""" | |
| Deploy your **current workflow** as an independent Hugging Face Space app. | |
| The workflow shown in the JSON preview above will be deployed exactly as is. | |
| """) | |
| gr.Markdown("*⚠️ Make sure to save/finalize your workflow design before deploying!*") | |
| with gr.Row(): | |
| with gr.Column(scale=2): | |
| deploy_name = gr.Textbox( | |
| label="App Name", | |
| placeholder="My Awesome Workflow App", | |
| value="My Workflow App" | |
| ) | |
| deploy_description = gr.Textbox( | |
| label="App Description", | |
| placeholder="Describe what your workflow does...", | |
| lines=3, | |
| value="A workflow application created with MOUSE Workflow builder." | |
| ) | |
| deploy_space_name = gr.Textbox( | |
| label="Space Name (your-username/space-name)", | |
| placeholder="username/my-workflow-app", | |
| info="This will be the URL of your Space" | |
| ) | |
| with gr.Column(scale=1): | |
| deploy_token = gr.Textbox( | |
| label="Hugging Face Token", | |
| type="password", | |
| placeholder="hf_...", | |
| info="Get your token from huggingface.co/settings/tokens" | |
| ) | |
| # API Keys 설정 섹션 | |
| gr.Markdown("### 🔑 API Keys Configuration") | |
| # FRIENDLI_TOKEN 설정 | |
| friendli_token_input = gr.Textbox( | |
| label="FRIENDLI_TOKEN (VIDraft/Gemma)", | |
| type="password", | |
| placeholder="flp_...", | |
| value=os.getenv("FRIENDLI_TOKEN", ""), | |
| info="Required for VIDraft. Will be added as secret." | |
| ) | |
| # OpenAI API Key 설정 | |
| openai_token_input = gr.Textbox( | |
| label="OPENAI_API_KEY (Optional)", | |
| type="password", | |
| placeholder="sk-...", | |
| value=os.getenv("OPENAI_API_KEY", ""), | |
| info="Optional. Leave empty if not using OpenAI." | |
| ) | |
| deploy_private = gr.Checkbox( | |
| label="Make Space Private", | |
| value=False | |
| ) | |
| btn_deploy = gr.Button("🚀 Deploy to HF Space", variant="primary", size="lg") | |
| # Deploy status | |
| deploy_status = gr.Markdown("") | |
| # Preview generated code | |
| with gr.Accordion("📄 Preview Generated Code", open=False): | |
| generated_code_preview = gr.Code( | |
| language="python", | |
| label="app.py (This will be deployed)", | |
| lines=20 | |
| ) | |
| # ─── UI Execution Section ─── | |
| with gr.Column(elem_classes=["ui-execution-section"]): | |
| gr.Markdown("## 🚀 UI Execution") | |
| gr.Markdown("Test your workflow instantly! Click below to generate and run the UI from your current workflow design.") | |
| btn_execute_ui = gr.Button("▶️ Generate & Run UI from Current Workflow", variant="primary", size="lg") | |
| # UI execution state | |
| ui_workflow_data = gr.State(None) | |
| # Dynamic UI container | |
| def render_execution_ui(workflow_data): | |
| if not workflow_data or not workflow_data.get("nodes"): | |
| gr.Markdown("*Load a workflow first, then click 'Generate & Run UI'*") | |
| return | |
| gr.Markdown("### 📋 Generated UI") | |
| # Extract input and output nodes | |
| input_nodes = [] | |
| output_nodes = [] | |
| for node in workflow_data.get("nodes", []): | |
| node_type = node.get("type", "") | |
| if node_type in ["ChatInput", "textInput", "Input", "numberInput"]: | |
| input_nodes.append(node) | |
| elif node_type in ["ChatOutput", "textOutput", "Output"]: | |
| output_nodes.append(node) | |
| elif node_type == "textNode": | |
| # textNode는 중간 처리 노드로, UI에는 표시하지 않음 | |
| pass | |
| # Create input components | |
| input_components = {} | |
| if input_nodes: | |
| gr.Markdown("#### 📥 Inputs") | |
| for node in input_nodes: | |
| node_id = node.get("id") | |
| label = node.get("data", {}).get("label", node_id) | |
| node_type = node.get("type") | |
| # Get default value | |
| template = node.get("data", {}).get("template", {}) | |
| default_value = template.get("input_value", {}).get("value", "") | |
| if node_type == "numberInput": | |
| input_components[node_id] = gr.Number( | |
| label=label, | |
| value=float(default_value) if default_value else 0 | |
| ) | |
| else: | |
| input_components[node_id] = gr.Textbox( | |
| label=label, | |
| value=default_value, | |
| lines=2, | |
| placeholder="Enter your input..." | |
| ) | |
| # Execute button | |
| execute_btn = gr.Button("🎯 Execute", variant="primary") | |
| # Create output components | |
| output_components = {} | |
| if output_nodes: | |
| gr.Markdown("#### 📤 Outputs") | |
| for node in output_nodes: | |
| node_id = node.get("id") | |
| label = node.get("data", {}).get("label", node_id) | |
| output_components[node_id] = gr.Textbox( | |
| label=label, | |
| interactive=False, | |
| lines=3 | |
| ) | |
| # Execution log | |
| gr.Markdown("#### 📊 Execution Log") | |
| log_output = gr.Textbox( | |
| label="Log", | |
| interactive=False, | |
| lines=5 | |
| ) | |
| # Define execution handler | |
| def execute_ui_workflow(*input_values): | |
| # Create input dictionary | |
| inputs_dict = {} | |
| input_keys = list(input_components.keys()) | |
| for i, key in enumerate(input_keys): | |
| if i < len(input_values): | |
| inputs_dict[key] = input_values[i] | |
| # Check API status | |
| log = "=== Workflow Execution Started ===\n" | |
| log += f"Inputs provided: {len(inputs_dict)}\n" | |
| # API 상태 확인 | |
| vidraft_token = os.getenv("FRIENDLI_TOKEN") | |
| openai_key = os.getenv("OPENAI_API_KEY") | |
| log += "\nAPI Status:\n" | |
| log += f"- FRIENDLI_TOKEN (VIDraft): {'✅ Found' if vidraft_token else '❌ Not found'}\n" | |
| log += f"- OPENAI_API_KEY: {'✅ Found' if openai_key else '❌ Not found'}\n" | |
| if not vidraft_token and not openai_key: | |
| log += "\n⚠️ No API keys found. Results will be simulated.\n" | |
| log += "To get real AI responses, set API keys in environment variables.\n" | |
| log += "Minimum requirement: FRIENDLI_TOKEN for VIDraft\n" | |
| elif vidraft_token and not openai_key: | |
| log += "\n✅ VIDraft API connected - Basic functionality available\n" | |
| log += "💡 Add OPENAI_API_KEY for full functionality\n" | |
| log += "\n--- Processing Nodes ---\n" | |
| try: | |
| results = execute_workflow_simple(workflow_data, inputs_dict) | |
| # Prepare outputs | |
| output_values = [] | |
| for node_id in output_components.keys(): | |
| value = results.get(node_id, "No output") | |
| output_values.append(value) | |
| # Log 길이 제한 | |
| display_value = value[:100] + "..." if len(str(value)) > 100 else value | |
| log += f"\nOutput [{node_id}]: {display_value}\n" | |
| log += "\n=== Execution Completed Successfully! ===\n" | |
| output_values.append(log) | |
| return output_values | |
| except Exception as e: | |
| error_msg = f"❌ Error: {str(e)}" | |
| log += f"\n{error_msg}\n" | |
| log += "=== Execution Failed ===\n" | |
| return [error_msg] * len(output_components) + [log] | |
| # Connect execution | |
| all_inputs = list(input_components.values()) | |
| all_outputs = list(output_components.values()) + [log_output] | |
| execute_btn.click( | |
| fn=execute_ui_workflow, | |
| inputs=all_inputs, | |
| outputs=all_outputs | |
| ) | |
| # ─── Event Handlers ─── | |
| # Load workflow (from text or file) | |
| def load_workflow(json_text, file_obj): | |
| data, status = load_json_from_text_or_file(json_text, file_obj) | |
| if data: | |
| # 로드 성공시 자동으로 미리보기 업데이트 | |
| return data, status, json_text if not file_obj else export_pretty(data), "💾 Auto-save: Loaded ✓" | |
| else: | |
| return None, status, gr.update(), gr.update() | |
| btn_load.click( | |
| fn=load_workflow, | |
| inputs=[import_json_text, file_upload], | |
| outputs=[loaded_data, status_text, import_json_text, save_indicator] | |
| ).then( | |
| fn=lambda current_trigger: not current_trigger, | |
| inputs=trigger_update, | |
| outputs=trigger_update | |
| ) | |
| # Auto-load when file is uploaded | |
| file_upload.change( | |
| fn=load_workflow, | |
| inputs=[import_json_text, file_upload], | |
| outputs=[loaded_data, status_text, import_json_text, save_indicator] | |
| ).then( | |
| fn=lambda current_trigger: not current_trigger, | |
| inputs=trigger_update, | |
| outputs=trigger_update | |
| ) | |
| # Load samples | |
| btn_sample_basic.click( | |
| fn=lambda: (create_sample_workflow("basic"), "✅ Basic Q&A sample loaded", export_pretty(create_sample_workflow("basic")), "💾 Auto-save: Sample loaded ✓"), | |
| outputs=[loaded_data, status_text, import_json_text, save_indicator] | |
| ).then( | |
| fn=lambda current_trigger: not current_trigger, | |
| inputs=trigger_update, | |
| outputs=trigger_update | |
| ) | |
| btn_sample_vidraft.click( | |
| fn=lambda: (create_sample_workflow("vidraft"), "✅ VIDraft sample loaded", export_pretty(create_sample_workflow("vidraft")), "💾 Auto-save: Sample loaded ✓"), | |
| outputs=[loaded_data, status_text, import_json_text, save_indicator] | |
| ).then( | |
| fn=lambda current_trigger: not current_trigger, | |
| inputs=trigger_update, | |
| outputs=trigger_update | |
| ) | |
| btn_sample_multi.click( | |
| fn=lambda: (create_sample_workflow("multi_input"), "✅ Multi-input sample loaded", export_pretty(create_sample_workflow("multi_input")), "💾 Auto-save: Sample loaded ✓"), | |
| outputs=[loaded_data, status_text, import_json_text, save_indicator] | |
| ).then( | |
| fn=lambda current_trigger: not current_trigger, | |
| inputs=trigger_update, | |
| outputs=trigger_update | |
| ) | |
| btn_sample_chain.click( | |
| fn=lambda: (create_sample_workflow("chain"), "✅ Chain processing sample loaded", export_pretty(create_sample_workflow("chain")), "💾 Auto-save: Sample loaded ✓"), | |
| outputs=[loaded_data, status_text, import_json_text, save_indicator] | |
| ).then( | |
| fn=lambda current_trigger: not current_trigger, | |
| inputs=trigger_update, | |
| outputs=trigger_update | |
| ) | |
| # Preview current workflow - 강제 새로고침 | |
| def force_refresh_preview(current_data): | |
| """현재 워크플로우 데이터를 강제로 새로고침""" | |
| if current_data: | |
| node_count = len(current_data.get("nodes", [])) | |
| edge_count = len(current_data.get("edges", [])) | |
| info = f"📊 Workflow contains {node_count} nodes and {edge_count} edges" | |
| return export_pretty(current_data), "💾 Auto-save: Refreshed ✓", info | |
| return "No workflow data available", "💾 Auto-save: No data", "📊 Empty workflow" | |
| btn_preview.click( | |
| fn=force_refresh_preview, | |
| inputs=loaded_data, | |
| outputs=[export_preview, save_indicator, workflow_info] | |
| ) | |
| # Download workflow는 이미 loaded_data.change에서 처리됨 | |
| # Auto-update export preview when workflow changes | |
| def update_preview_and_download(data): | |
| """워크플로우 변경시 미리보기와 다운로드 업데이트""" | |
| if data: | |
| preview = export_pretty(data) | |
| download_file = export_file(data) | |
| node_count = len(data.get("nodes", [])) | |
| edge_count = len(data.get("edges", [])) | |
| status = f"📊 Workflow contains {node_count} nodes and {edge_count} edges" | |
| return preview, download_file, status | |
| return "No workflow data", None, "📊 Empty workflow" | |
| loaded_data.change( | |
| fn=update_preview_and_download, | |
| inputs=loaded_data, | |
| outputs=[export_preview, btn_download, workflow_info] | |
| ) | |
| # Generate UI execution - 현재 워크플로우 사용 | |
| def prepare_ui_execution(current_data): | |
| """현재 워크플로우를 UI 실행용으로 준비""" | |
| if not current_data or not current_data.get("nodes"): | |
| gr.Warning("Please create a workflow first!") | |
| return None | |
| return current_data | |
| btn_execute_ui.click( | |
| fn=prepare_ui_execution, | |
| inputs=loaded_data, | |
| outputs=ui_workflow_data | |
| ) | |
| # ─── Deploy Event Handlers ─── | |
| # Preview generated code | |
| def preview_generated_code(workflow_data, app_name, app_description): | |
| if not workflow_data: | |
| return "# No workflow loaded\n# Create or load a workflow first" | |
| if not workflow_data.get("nodes"): | |
| return "# Empty workflow\n# Add some nodes to see the generated code" | |
| try: | |
| code = generate_standalone_app(workflow_data, app_name, app_description) | |
| return code | |
| except Exception as e: | |
| return f"# Error generating code\n# {str(e)}" | |
| # Update preview when inputs change | |
| deploy_name.change( | |
| fn=preview_generated_code, | |
| inputs=[loaded_data, deploy_name, deploy_description], | |
| outputs=generated_code_preview | |
| ) | |
| deploy_description.change( | |
| fn=preview_generated_code, | |
| inputs=[loaded_data, deploy_name, deploy_description], | |
| outputs=generated_code_preview | |
| ) | |
| # Update preview when workflow changes too | |
| loaded_data.change( | |
| fn=preview_generated_code, | |
| inputs=[loaded_data, deploy_name, deploy_description], | |
| outputs=generated_code_preview | |
| ) | |
| # Deploy handler | |
| def handle_deploy(workflow_data, app_name, app_description, hf_token, space_name, | |
| friendli_token, openai_token, is_private): | |
| if not workflow_data: | |
| return "❌ No workflow loaded. Please create or load a workflow first." | |
| if not workflow_data.get("nodes"): | |
| return "❌ Empty workflow. Please add some nodes to your workflow." | |
| if not hf_token: | |
| return "❌ Hugging Face token is required. Get yours at huggingface.co/settings/tokens" | |
| if not space_name: | |
| return "❌ Space name is required. Format: username/space-name" | |
| # Validate space name format | |
| if "/" not in space_name: | |
| return "❌ Invalid space name format. Use: username/space-name" | |
| # Check if huggingface-hub is available | |
| if not HF_HUB_AVAILABLE: | |
| return "❌ huggingface-hub library not installed. Install with: pip install huggingface-hub" | |
| # Show deploying status | |
| yield "🔄 Deploying to Hugging Face Space..." | |
| # Prepare API keys | |
| api_keys = {} | |
| # Always include FRIENDLI_TOKEN (even if empty) | |
| if not friendli_token: | |
| friendli_token = os.getenv("FRIENDLI_TOKEN", "") | |
| if friendli_token: | |
| api_keys["FRIENDLI_TOKEN"] = friendli_token | |
| # Include OpenAI key if provided | |
| if not openai_token: | |
| openai_token = os.getenv("OPENAI_API_KEY", "") | |
| if openai_token: | |
| api_keys["OPENAI_API_KEY"] = openai_token | |
| # Deploy | |
| result = deploy_to_huggingface( | |
| workflow_data=workflow_data, | |
| app_name=app_name, | |
| app_description=app_description, | |
| hf_token=hf_token, | |
| space_name=space_name, | |
| is_private=is_private, | |
| api_keys=api_keys | |
| ) | |
| if result["success"]: | |
| # Build secrets status message | |
| secrets_msg = "\n\n**🔑 API Keys Status:**" | |
| if result.get("added_secrets"): | |
| for secret in result["added_secrets"]: | |
| secrets_msg += f"\n- {secret}: ✅ Successfully added" | |
| if result.get("failed_secrets"): | |
| for failure in result["failed_secrets"]: | |
| secrets_msg += f"\n- {failure}: ❌ Failed to add" | |
| # Check for missing required keys | |
| providers = result.get("providers_used", []) | |
| if "VIDraft" in providers and "FRIENDLI_TOKEN" not in result.get("added_secrets", []): | |
| secrets_msg += "\n- FRIENDLI_TOKEN: ⚠️ Required for VIDraft but not provided" | |
| if "OpenAI" in providers and "OPENAI_API_KEY" not in result.get("added_secrets", []): | |
| secrets_msg += "\n- OPENAI_API_KEY: ⚠️ Required for OpenAI but not provided" | |
| yield f"""✅ **Deployment Successful!** | |
| 🎉 Your workflow has been deployed to: | |
| [{result['space_url']}]({result['space_url']}) | |
| ⏱️ The Space will be ready in a few minutes. Building usually takes 2-5 minutes. | |
| {secrets_msg} | |
| 📝 **Providers Detected in Workflow:** | |
| {', '.join(result.get('providers_used', [])) if result.get('providers_used') else 'No LLM providers detected'} | |
| 🚀 **Default Configuration:** | |
| The app is configured to prioritize VIDraft (Gemma-3-r1984-27B) for optimal performance. | |
| 📚 **Space Management:** | |
| - To update secrets: Go to Space settings → Repository secrets | |
| - To restart Space: Go to Space settings → Factory reboot | |
| - To make changes: Edit files directly in the Space repository | |
| """ | |
| else: | |
| yield f"❌ **Deployment Failed**\n\nError: {result['error']}" | |
| btn_deploy.click( | |
| fn=handle_deploy, | |
| inputs=[loaded_data, deploy_name, deploy_description, deploy_token, deploy_space_name, | |
| friendli_token_input, openai_token_input, deploy_private], | |
| outputs=deploy_status | |
| ) | |
| # ------------------------------------------------------------------- | |
| # 🚀 실행 | |
| # ------------------------------------------------------------------- | |
| if __name__ == "__main__": | |
| demo.launch(server_name="0.0.0.0", show_error=True) |