openfree commited on
Commit
d14c764
·
verified ·
1 Parent(s): d777350

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +221 -0
app.py ADDED
@@ -0,0 +1,221 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ import torch
3
+ from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
4
+ from threading import Thread
5
+ import spaces
6
+
7
+ # Load model and tokenizer
8
+ model_id = "openfree/Darwin-Qwen3-4B"
9
+ tokenizer = AutoTokenizer.from_pretrained(model_id)
10
+ model = AutoModelForCausalLM.from_pretrained(
11
+ model_id,
12
+ torch_dtype=torch.float16,
13
+ device_map="auto",
14
+ trust_remote_code=True
15
+ )
16
+
17
+ @spaces.GPU
18
+ def generate_response(
19
+ message,
20
+ history,
21
+ temperature=0.7,
22
+ max_new_tokens=512,
23
+ top_p=0.9,
24
+ repetition_penalty=1.1,
25
+ ):
26
+ # Format conversation history
27
+ conversation = []
28
+ for user, assistant in history:
29
+ conversation.extend([
30
+ {"role": "user", "content": user},
31
+ {"role": "assistant", "content": assistant}
32
+ ])
33
+ conversation.append({"role": "user", "content": message})
34
+
35
+ # Apply chat template if available
36
+ if hasattr(tokenizer, "apply_chat_template"):
37
+ text = tokenizer.apply_chat_template(
38
+ conversation,
39
+ tokenize=False,
40
+ add_generation_prompt=True
41
+ )
42
+ else:
43
+ # Fallback formatting
44
+ text = "\n".join([f"User: {message}" if i["role"] == "user"
45
+ else f"Assistant: {message}"
46
+ for i in conversation])
47
+ text += "\nAssistant: "
48
+
49
+ # Tokenize input
50
+ inputs = tokenizer(text, return_tensors="pt", truncation=True, max_length=2048)
51
+ inputs = inputs.to(model.device)
52
+
53
+ # Set up streaming
54
+ streamer = TextIteratorStreamer(
55
+ tokenizer,
56
+ timeout=10.0,
57
+ skip_prompt=True,
58
+ skip_special_tokens=True
59
+ )
60
+
61
+ # Generation parameters
62
+ gen_kwargs = dict(
63
+ inputs,
64
+ streamer=streamer,
65
+ max_new_tokens=max_new_tokens,
66
+ temperature=temperature,
67
+ top_p=top_p,
68
+ repetition_penalty=repetition_penalty,
69
+ do_sample=True,
70
+ pad_token_id=tokenizer.eos_token_id,
71
+ eos_token_id=tokenizer.eos_token_id,
72
+ )
73
+
74
+ # Start generation in separate thread
75
+ thread = Thread(target=model.generate, kwargs=gen_kwargs)
76
+ thread.start()
77
+
78
+ # Stream output
79
+ response = ""
80
+ for new_text in streamer:
81
+ response += new_text
82
+ yield response
83
+
84
+ thread.join()
85
+
86
+ # Create Gradio interface
87
+ with gr.Blocks(title="Darwin-Qwen3-4B Chat") as demo:
88
+ gr.Markdown(
89
+ """
90
+ # 🌱 Darwin-Qwen3-4B Interactive Chat
91
+
92
+ Test the evolutionary merged model that combines the strengths of instruction-following and reasoning capabilities.
93
+
94
+ **Model**: [openfree/Darwin-Qwen3-4B](https://huggingface.co/openfree/Darwin-Qwen3-4B)
95
+
96
+ This model was created using the Darwin A2AP Enhanced v3.2 evolutionary algorithm, merging:
97
+ - Parent 1: Qwen/Qwen3-4B-Instruct-2507
98
+ - Parent 2: Qwen/Qwen3-4B-Thinking-2507
99
+ """
100
+ )
101
+
102
+ chatbot = gr.Chatbot(
103
+ label="Chat History",
104
+ bubble_full_width=False,
105
+ height=400
106
+ )
107
+
108
+ with gr.Row():
109
+ msg = gr.Textbox(
110
+ label="Your Message",
111
+ placeholder="Type your message here and press Enter...",
112
+ lines=2,
113
+ scale=4
114
+ )
115
+ submit_btn = gr.Button("Send", scale=1, variant="primary")
116
+
117
+ with gr.Accordion("Advanced Settings", open=False):
118
+ temperature = gr.Slider(
119
+ minimum=0.1,
120
+ maximum=1.5,
121
+ value=0.7,
122
+ step=0.1,
123
+ label="Temperature (higher = more creative)"
124
+ )
125
+ max_new_tokens = gr.Slider(
126
+ minimum=64,
127
+ maximum=2048,
128
+ value=512,
129
+ step=64,
130
+ label="Max New Tokens"
131
+ )
132
+ top_p = gr.Slider(
133
+ minimum=0.1,
134
+ maximum=1.0,
135
+ value=0.9,
136
+ step=0.05,
137
+ label="Top-p (nucleus sampling)"
138
+ )
139
+ repetition_penalty = gr.Slider(
140
+ minimum=1.0,
141
+ maximum=1.5,
142
+ value=1.1,
143
+ step=0.05,
144
+ label="Repetition Penalty"
145
+ )
146
+
147
+ with gr.Row():
148
+ clear_btn = gr.Button("Clear Chat", variant="secondary")
149
+
150
+ gr.Examples(
151
+ examples=[
152
+ "Explain quantum computing in simple terms.",
153
+ "Write a Python function to find prime numbers.",
154
+ "What are the key differences between machine learning and deep learning?",
155
+ "Suggest a healthy meal plan for a week.",
156
+ "How does photosynthesis work?",
157
+ ],
158
+ inputs=msg,
159
+ label="Example Prompts"
160
+ )
161
+
162
+ # Event handlers
163
+ def user_submit(message, history):
164
+ return "", history + [[message, None]]
165
+
166
+ def bot_respond(history, temperature, max_new_tokens, top_p, repetition_penalty):
167
+ message = history[-1][0]
168
+ history[-1][1] = ""
169
+
170
+ for response in generate_response(
171
+ message,
172
+ history[:-1],
173
+ temperature,
174
+ max_new_tokens,
175
+ top_p,
176
+ repetition_penalty
177
+ ):
178
+ history[-1][1] = response
179
+ yield history
180
+
181
+ msg.submit(
182
+ user_submit,
183
+ [msg, chatbot],
184
+ [msg, chatbot]
185
+ ).then(
186
+ bot_respond,
187
+ [chatbot, temperature, max_new_tokens, top_p, repetition_penalty],
188
+ chatbot
189
+ )
190
+
191
+ submit_btn.click(
192
+ user_submit,
193
+ [msg, chatbot],
194
+ [msg, chatbot]
195
+ ).then(
196
+ bot_respond,
197
+ [chatbot, temperature, max_new_tokens, top_p, repetition_penalty],
198
+ chatbot
199
+ )
200
+
201
+ clear_btn.click(lambda: None, None, chatbot, queue=False)
202
+
203
+ gr.Markdown(
204
+ """
205
+ ---
206
+ ### About Darwin Project
207
+
208
+ The Darwin Project demonstrates a new paradigm in AI model creation through evolutionary algorithms.
209
+ This model showcases the fusion of different model capabilities at 1/10,000 the cost of traditional training.
210
+
211
+ **Key Features:**
212
+ - Automated model merging without manual hyperparameter tuning
213
+ - Multi-objective optimization (accuracy, robustness, generalization)
214
+ - 5,000+ generation evolution process
215
+
216
+ [GitHub](https://github.com/yourusername/darwin-project) | [Paper](https://arxiv.org/abs/xxxx.xxxxx) (Coming Soon)
217
+ """
218
+ )
219
+
220
+ if __name__ == "__main__":
221
+ demo.queue().launch(share=True)