Spaces:
Sleeping
Sleeping
Rajan Sharma
commited on
Create schema_profiler.py
Browse files- schema_profiler.py +103 -0
schema_profiler.py
ADDED
|
@@ -0,0 +1,103 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# schema_profiler.py
|
| 2 |
+
from __future__ import annotations
|
| 3 |
+
from typing import Dict, Any, List, Tuple, Optional
|
| 4 |
+
import pandas as pd
|
| 5 |
+
import numpy as np
|
| 6 |
+
import re, math, os
|
| 7 |
+
|
| 8 |
+
# Optional embeddings for soft matching; falls back to lexical if missing
|
| 9 |
+
try:
|
| 10 |
+
from sentence_transformers import SentenceTransformer
|
| 11 |
+
_EMB = SentenceTransformer("all-MiniLM-L6-v2")
|
| 12 |
+
except Exception:
|
| 13 |
+
_EMB = None
|
| 14 |
+
|
| 15 |
+
def profile_csv(path: str, max_rows: int = 10000) -> Dict[str, Any]:
|
| 16 |
+
df = pd.read_csv(path, nrows=max_rows, low_memory=False)
|
| 17 |
+
cols = []
|
| 18 |
+
for c in df.columns:
|
| 19 |
+
s = df[c]
|
| 20 |
+
cols.append({
|
| 21 |
+
"raw": str(c),
|
| 22 |
+
"dtype": str(s.dtype),
|
| 23 |
+
"nonnull": int(s.notna().sum()),
|
| 24 |
+
"samples": s.dropna().astype(str).head(3).tolist(),
|
| 25 |
+
})
|
| 26 |
+
return {"kind":"csv","name":os.path.basename(path),"rows":len(df),"columns":cols,"df":df}
|
| 27 |
+
|
| 28 |
+
def build_dynamic_label_space(scenario_text: str) -> List[str]:
|
| 29 |
+
"""
|
| 30 |
+
Create a candidate label space from the scenario itself:
|
| 31 |
+
- Nounish/metric-like phrases (very permissive)
|
| 32 |
+
- Units hints (%, hours, days, rate, cost, capacity)
|
| 33 |
+
- Also include frequent bigrams from scenario
|
| 34 |
+
"""
|
| 35 |
+
t = (scenario_text or "").lower()
|
| 36 |
+
# crude noun-ish grabs
|
| 37 |
+
phrases = re.findall(r"[a-z][a-z0-9_./%-]*(?:\s+[a-z0-9_./%-]+){0,3}", t)
|
| 38 |
+
phrases = [p.strip() for p in phrases if len(p.split())<=4 and len(p)>=3]
|
| 39 |
+
# keep likely metric-ish tokens
|
| 40 |
+
keepers = []
|
| 41 |
+
for p in phrases:
|
| 42 |
+
if any(k in p for k in ["median","mean","p90","p95","rate","cost","capacity","clients","visits","screen","a1c","bmi","bp","wait","throughput","budget","per day","per client","percent","%","hours","days","delta","change","outcome"]):
|
| 43 |
+
keepers.append(p)
|
| 44 |
+
# dedupe and limit size
|
| 45 |
+
seen = set()
|
| 46 |
+
out = []
|
| 47 |
+
for x in keepers:
|
| 48 |
+
x = re.sub(r"\s+", " ", x).strip()
|
| 49 |
+
if x not in seen:
|
| 50 |
+
seen.add(x)
|
| 51 |
+
out.append(x)
|
| 52 |
+
if len(out) >= 128:
|
| 53 |
+
break
|
| 54 |
+
return out or ["value","count","rate","cost","capacity"]
|
| 55 |
+
|
| 56 |
+
def soft_bind_inputs_to_columns(
|
| 57 |
+
required_inputs: List[str],
|
| 58 |
+
column_bag: List[str],
|
| 59 |
+
scenario_labels: List[str],
|
| 60 |
+
min_score: float = 0.46
|
| 61 |
+
) -> Dict[str, Dict[str, Any]]:
|
| 62 |
+
"""
|
| 63 |
+
For each required input "name", find the best candidate column from the union of:
|
| 64 |
+
- uploaded headers
|
| 65 |
+
- scenario-derived label space
|
| 66 |
+
Returns {input_name: {"match": raw_col_or_label, "score": float, "source": "header|scenario"}}
|
| 67 |
+
If no confident match, the 'match' is None.
|
| 68 |
+
"""
|
| 69 |
+
req = [r.strip() for r in required_inputs if r and r.strip()]
|
| 70 |
+
if not req:
|
| 71 |
+
return {}
|
| 72 |
+
|
| 73 |
+
# Vectorize all tokens if embeddings present
|
| 74 |
+
combined_pool = list(dict.fromkeys(column_bag + scenario_labels))
|
| 75 |
+
if _EMB is not None and combined_pool:
|
| 76 |
+
pool_vecs = _EMB.encode(combined_pool)
|
| 77 |
+
req_vecs = _EMB.encode(req)
|
| 78 |
+
sims = np.matmul(req_vecs, pool_vecs.T) # cosine if model outputs normalized; good enough here
|
| 79 |
+
mapping: Dict[str, Dict[str, Any]] = {}
|
| 80 |
+
for i, name in enumerate(req):
|
| 81 |
+
j = int(np.argmax(sims[i]))
|
| 82 |
+
score = float(np.max(sims[i]))
|
| 83 |
+
cand = combined_pool[j]
|
| 84 |
+
src = "header" if cand in column_bag else "scenario"
|
| 85 |
+
mapping[name] = {"match": cand if score >= min_score else None, "score": score, "source": src}
|
| 86 |
+
return mapping
|
| 87 |
+
|
| 88 |
+
# Fallback: lexical overlap (very conservative)
|
| 89 |
+
def _lex_overlap(a: str, b: str) -> float:
|
| 90 |
+
A = set(re.findall(r"[a-z0-9]+", a.lower()))
|
| 91 |
+
B = set(re.findall(r"[a-z0-9]+", b.lower()))
|
| 92 |
+
if not A or not B: return 0.0
|
| 93 |
+
return len(A & B) / math.sqrt(len(A)*len(B))
|
| 94 |
+
|
| 95 |
+
mapping: Dict[str, Dict[str, Any]] = {}
|
| 96 |
+
for name in req:
|
| 97 |
+
best = ("", 0.0, "")
|
| 98 |
+
for cand in combined_pool:
|
| 99 |
+
s = _lex_overlap(name, cand)
|
| 100 |
+
if s > best[1]:
|
| 101 |
+
best = (cand, s, "header" if cand in column_bag else "scenario")
|
| 102 |
+
mapping[name] = {"match": best[0] if best[1] >= 0.34 else None, "score": best[1], "source": best[2]}
|
| 103 |
+
return mapping
|