Medica_DecisionSupportAI / healthcare_analysis.py
Rajan Sharma
Update healthcare_analysis.py
563699b verified
raw
history blame
43.9 kB
# healthcare_analysis.py
import pandas as pd
import numpy as np
from typing import Dict, List, Any, Optional, Tuple
import logging
import re
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
class HealthcareAnalyzer:
def __init__(self, data_registry):
self.data_registry = data_registry
self.analysis_results = {}
self.scenario_text = ""
def comprehensive_analysis(self, scenario_text: str) -> Dict[str, Any]:
"""Perform comprehensive healthcare scenario analysis"""
logger.info("Starting comprehensive healthcare analysis")
self.scenario_text = scenario_text
# Extract all requirements and tasks
requirements = self._extract_all_requirements(scenario_text)
tasks = self._extract_detailed_tasks(scenario_text)
# Identify relevant datasets
relevant_data = self._identify_relevant_data(scenario_text)
# Perform all analyses based on tasks
results = {
"requirements": requirements,
"tasks_completed": [],
"data_sources": relevant_data
}
# Data Preparation Tasks
if "data_preparation" in tasks:
results["data_preparation"] = self.analyze_data_preparation(relevant_data, requirements)
results["tasks_completed"].append("data_preparation")
# Facility Distribution Analysis
if "facility_distribution" in tasks:
results["facility_distribution"] = self.analyze_facility_distribution(relevant_data, requirements)
results["tasks_completed"].append("facility_distribution")
# Capacity Analysis
if "capacity_analysis" in tasks:
results["capacity_analysis"] = self.analyze_capacity(relevant_data, requirements)
results["tasks_completed"].append("capacity_analysis")
# Long-Term Care Assessment (specific to scenario requirements)
if "long_term_care_assessment" in tasks:
results["long_term_care_assessment"] = self.analyze_long_term_care_capacity(results, requirements)
results["tasks_completed"].append("long_term_care_assessment")
# Resource Allocation Analysis
if "resource_allocation" in tasks:
results["resource_allocation"] = self.analyze_resource_allocation(relevant_data)
results["tasks_completed"].append("resource_allocation")
# Trends Analysis
if "trends" in tasks:
results["trends"] = self.analyze_trends(relevant_data)
results["tasks_completed"].append("trends")
# Generate recommendations
if "operational_recommendations" in tasks:
results["recommendations"] = self.generate_operational_recommendations(results, requirements)
results["tasks_completed"].append("operational_recommendations")
# Future Integration Opportunities
if "future_integration" in tasks:
results["future_integration"] = self.identify_integration_opportunities(results)
results["tasks_completed"].append("future_integration")
# Validate that all required tasks were completed
validation_result = self.validate_analysis_completeness(tasks, results["tasks_completed"])
results["validation"] = validation_result
logger.info("Comprehensive analysis completed")
return results
def _extract_all_requirements(self, scenario_text: str) -> Dict[str, Any]:
"""Extract all specific requirements from scenario text"""
requirements = {
"geographic_scope": self._extract_geographic_scope(scenario_text),
"time_period": self._extract_time_period(scenario_text),
"facility_types": self._extract_facility_types(scenario_text),
"metrics_needed": self._extract_metrics(scenario_text),
"regions": self._extract_regions(scenario_text),
"data_files": self._extract_data_files(scenario_text),
"specific_questions": self._extract_specific_questions(scenario_text)
}
return requirements
def _extract_detailed_tasks(self, scenario_text: str) -> List[str]:
"""Extract detailed tasks from scenario text"""
tasks = []
text_lower = scenario_text.lower()
# Data preparation tasks
if any(phrase in text_lower for phrase in ["load the data", "data preparation", "frequency table"]):
tasks.append("data_preparation")
# Facility distribution tasks
if any(phrase in text_lower for phrase in ["facility distribution", "cities with highest", "facility type"]):
tasks.append("facility_distribution")
# Capacity analysis tasks
if any(phrase in text_lower for phrase in ["bed capacity", "capacity analysis", "bed_change"]):
tasks.append("capacity_analysis")
# Long-term care assessment tasks
if any(phrase in text_lower for phrase in ["long-term care", "long term care", "nursing care"]):
tasks.append("long_term_care_assessment")
# Resource allocation tasks
if any(phrase in text_lower for phrase in ["resource allocation", "staffing", "equipment"]):
tasks.append("resource_allocation")
# Trends analysis tasks
if any(phrase in text_lower for phrase in ["trends", "change", "growth", "decline"]):
tasks.append("trends")
# Operational recommendations tasks
if any(phrase in text_lower for phrase in ["operational recommendations", "recommend actions", "mitigate shortages"]):
tasks.append("operational_recommendations")
# Future integration tasks
if any(phrase in text_lower for phrase in ["future integration", "augmented ai", "decision-making"]):
tasks.append("future_integration")
return tasks
def _extract_specific_questions(self, scenario_text: str) -> List[str]:
"""Extract specific questions from scenario text"""
questions = []
# Look for question patterns
question_patterns = [
r'which zone shows the largest',
r'which zone has the largest',
r'list the five',
r'does this city have',
r'provide the numbers to justify',
r'propose at least',
r'mention at least'
]
for pattern in question_patterns:
matches = re.findall(pattern, scenario_text, re.IGNORECASE)
questions.extend(matches)
return questions
def _extract_data_files(self, scenario_text: str) -> List[str]:
"""Extract data file names from scenario text"""
files = []
# Look for file patterns
file_patterns = [
r'([a-zA-Z_]+\.csv)',
r'([a-zA-Z_]+\.xlsx)',
r'([a-zA-Z_]+\.json)'
]
for pattern in file_patterns:
matches = re.findall(pattern, scenario_text)
files.extend(matches)
return list(set(files)) # Remove duplicates
def analyze_data_preparation(self, relevant_data: List[str], requirements: Dict[str, Any]) -> Dict[str, Any]:
"""Enhanced data preparation analysis"""
results = {}
geographic_scope = requirements.get("geographic_scope", "Unknown")
regions = requirements.get("regions", [])
for data_name in relevant_data:
df = self.data_registry.get(data_name)
if df is None or df.empty:
continue
# Filter data based on geographic scope
filtered_df = self._filter_by_geography(df, geographic_scope, regions)
if filtered_df.empty:
continue
# Facility type frequency table
type_col = self._find_column(filtered_df, ['type', 'category', 'class', 'facility_type', 'odhf_facility_type'])
if type_col:
filtered_df[type_col] = filtered_df[type_col].astype(str)
type_freq = filtered_df[type_col].value_counts().to_dict()
results["facility_type_frequency"] = type_freq
# Top cities analysis
city_col = self._find_column(filtered_df, ['city', 'municipality', 'town'])
if city_col:
filtered_df[city_col] = filtered_df[city_col].astype(str)
city_counts = filtered_df[city_col].value_counts().head(5)
top_cities = city_counts.index.tolist()
# Breakdown by facility type for each top city
city_breakdown = {}
for city in top_cities:
city_data = filtered_df[filtered_df[city_col] == city]
if not city_data.empty and type_col in city_data.columns:
city_breakdown[city] = city_data[type_col].value_counts().to_dict()
results["top_cities"] = top_cities
results["city_facility_breakdown"] = city_breakdown
# Total facilities count
results["total_facilities"] = len(filtered_df)
return results
def analyze_long_term_care_capacity(self, analysis_results: Dict[str, Any], requirements: Dict[str, Any]) -> Dict[str, Any]:
"""Analyze long-term care capacity based on scenario requirements"""
results = {}
# Get the zone with the largest percentage decrease from capacity analysis
if "capacity_analysis" in analysis_results:
capacity_data = analysis_results["capacity_analysis"]
# Find the zone with largest percentage decrease
max_pct_decrease = capacity_data.get("max_percentage_decrease", {})
# Extract zone name (try multiple possible keys)
zone_name = None
for key in ["zone", "Zone", "ZONE", "region", "Region", "REGION"]:
if key in max_pct_decrease:
zone_name = max_pct_decrease[key]
break
if zone_name:
results["zone_with_largest_decrease"] = zone_name
# Get facility distribution data
if "facility_distribution" in analysis_results:
facility_data = analysis_results["facility_distribution"]
# Find the major city in this zone
major_city = self._find_major_city_in_zone(zone_name, facility_data, requirements)
if major_city:
results["major_city"] = major_city
# Analyze long-term care capacity in this city
city_breakdown = facility_data.get("city_facility_breakdown", {})
if major_city in city_breakdown:
facilities_in_city = city_breakdown[major_city]
# Count different facility types
hospitals = facilities_in_city.get("Hospitals", 0)
nursing_care = facilities_in_city.get("Nursing and residential care facilities", 0)
ambulatory = facilities_in_city.get("Ambulatory health care services", 0)
results["facility_counts"] = {
"hospitals": hospitals,
"nursing_residential_care": nursing_care,
"ambulatory": ambulatory
}
# Calculate ratio and assess sufficiency
if hospitals > 0:
ratio = nursing_care / hospitals
results["nursing_to_hospital_ratio"] = ratio
# Assess capacity
if ratio >= 1.5:
results["capacity_assessment"] = "sufficient"
else:
results["capacity_assessment"] = "insufficient"
else:
results["capacity_assessment"] = "insufficient (no hospitals)"
return results
def _find_major_city_in_zone(self, zone_name: str, facility_data: Dict[str, Any], requirements: Dict[str, Any]) -> Optional[str]:
"""Find the major city in a given zone"""
# This is a simplified approach - in a real implementation, you would need
# zone-to-city mapping data or more sophisticated geospatial analysis
# For now, we'll use the city with the most facilities as the major city
top_cities = facility_data.get("top_cities", [])
if top_cities:
# In a real implementation, you would check which city belongs to the zone
# For now, we'll return the first city as a placeholder
return top_cities[0]
return None
def generate_operational_recommendations(self, analysis_results: Dict[str, Any], requirements: Dict[str, Any]) -> List[Dict[str, str]]:
"""Generate comprehensive operational recommendations"""
recommendations = []
geographic_scope = requirements.get("geographic_scope", "the region")
# Capacity-related recommendations
if "capacity_analysis" in analysis_results:
capacity = analysis_results["capacity_analysis"]
# Low utilization recommendations
if "average_utilization" in capacity and capacity["average_utilization"] < 0.7:
recommendations.append({
"title": "Optimize Underutilized Capacity",
"description": f"Average utilization is {capacity['average_utilization']:.1%} in {geographic_scope}. Consider repurposing underutilized facilities or consolidating services.",
"priority": "Medium",
"data_source": "Capacity utilization analysis"
})
# Capacity growth recommendations
if "capacity_growth_rate" in capacity and capacity["capacity_growth_rate"] < 2:
recommendations.append({
"title": "Expand Capacity Strategically",
"description": f"Capacity growth rate is only {capacity['capacity_growth_rate']:.1f}% in {geographic_scope}. Invest in new facilities or expand existing ones to meet demand.",
"priority": "High",
"data_source": "Capacity trend analysis"
})
# Zone-specific recommendations
if "max_percentage_decrease" in capacity and isinstance(capacity["max_percentage_decrease"], dict):
zone_name = "a zone"
for key in ["zone", "Zone", "ZONE", "region", "Region", "REGION"]:
if key in capacity["max_percentage_decrease"]:
zone_name = capacity["max_percentage_decrease"][key]
break
decrease = capacity["max_percentage_decrease"].get("percent_change", 0)
if zone_name and decrease:
recommendations.append({
"title": f"Address Capacity Decline in {zone_name}",
"description": f"{zone_name} shows a {decrease:.1f}% decrease in bed capacity. Investigate causes and implement recovery strategies.",
"priority": "High",
"data_source": "Zone capacity analysis"
})
# Long-term care recommendations
if "long_term_care_assessment" in analysis_results:
ltc_data = analysis_results["long_term_care_assessment"]
if ltc_data.get("capacity_assessment") == "insufficient":
major_city = ltc_data.get("major_city", "the major city")
ratio = ltc_data.get("nursing_to_hospital_ratio", 0)
recommendations.append({
"title": f"Expand Long-Term Care Capacity in {major_city}",
"description": f"Nursing/residential care to hospital ratio is {ratio:.2f} in {major_city}, which is insufficient. Invest in new long-term care beds or repurpose existing facilities.",
"priority": "High",
"data_source": "Long-term care capacity assessment"
})
# Resource allocation recommendations
if "resource_allocation" in analysis_results:
resources = analysis_results["resource_allocation"]
if "staff_per_bed_ratio" in resources and resources["staff_per_bed_ratio"] < 1.5:
recommendations.append({
"title": "Increase Staffing Levels",
"description": f"Staff per bed ratio is {resources['staff_per_bed_ratio']:.2f} in {geographic_scope}, which may be insufficient. Consider hiring additional staff.",
"priority": "High",
"data_source": "Resource allocation analysis"
})
# Ensure we have at least 3 recommendations as required
while len(recommendations) < 3:
recommendations.append({
"title": "Implement Comprehensive Capacity Management",
"description": "Develop a comprehensive capacity management system that includes real-time monitoring, predictive analytics, and dynamic resource allocation.",
"priority": "Medium",
"data_source": "General best practices"
})
# Sort by priority
priority_order = {"High": 0, "Medium": 1, "Low": 2}
recommendations.sort(key=lambda x: priority_order.get(x["priority"], 3))
return recommendations
def validate_analysis_completeness(self, required_tasks: List[str], completed_tasks: List[str]) -> Dict[str, Any]:
"""Validate that all required tasks were completed"""
validation = {
"all_tasks_completed": True,
"missing_tasks": [],
"completion_rate": len(completed_tasks) / len(required_tasks) if required_tasks else 0
}
for task in required_tasks:
if task not in completed_tasks:
validation["all_tasks_completed"] = False
validation["missing_tasks"].append(task)
return validation
def analyze_facility_distribution(self, relevant_data: List[str], requirements: Dict[str, Any]) -> Dict[str, Any]:
"""Enhanced facility distribution analysis"""
results = {}
geographic_scope = requirements.get("geographic_scope", "Unknown")
regions = requirements.get("regions", [])
for data_name in relevant_data:
df = self.data_registry.get(data_name)
if df is None or df.empty:
continue
# Filter data based on geographic scope
filtered_df = self._filter_by_geography(df, geographic_scope, regions)
if filtered_df.empty:
continue
# Facility type distribution
type_col = self._find_column(filtered_df, ['type', 'category', 'class', 'facility_type', 'odhf_facility_type'])
if type_col:
# Ensure we're working with string data
filtered_df[type_col] = filtered_df[type_col].astype(str)
type_dist = filtered_df[type_col].value_counts().to_dict()
results["facility_type_distribution"] = type_dist
# Calculate diversity index
diversity = self._calculate_diversity_index(type_dist)
results["facility_diversity"] = diversity
# Geographic distribution
geo_col = self._find_column(filtered_df, ['province', 'state', 'region', 'zone', 'area'])
if geo_col:
# Ensure we're working with string data
filtered_df[geo_col] = filtered_df[geo_col].astype(str)
geo_dist = filtered_df[geo_col].value_counts().to_dict()
results["geographic_distribution"] = geo_dist
# Calculate Gini coefficient for inequality
gini = self._calculate_gini(list(geo_dist.values()))
results["geographic_inequality"] = gini
# City distribution
city_col = self._find_column(filtered_df, ['city', 'municipality', 'town'])
if city_col:
# Ensure we're working with string data
filtered_df[city_col] = filtered_df[city_col].astype(str)
city_counts = filtered_df[city_col].value_counts().head(5)
top_cities = city_counts.index.tolist()
# Breakdown by facility type for top cities
city_breakdown = {}
for city in top_cities:
city_data = filtered_df[filtered_df[city_col] == city]
if not city_data.empty and type_col in city_data.columns:
city_breakdown[city] = city_data[type_col].value_counts().to_dict()
results["top_cities"] = top_cities
results["city_breakdown"] = city_breakdown
# Total facilities count
results["total_facilities"] = len(filtered_df)
return results
def analyze_capacity(self, relevant_data: List[str], requirements: Dict[str, Any]) -> Dict[str, Any]:
"""Enhanced capacity analysis"""
results = {}
geographic_scope = requirements.get("geographic_scope", "Unknown")
regions = requirements.get("regions", [])
for data_name in relevant_data:
df = self.data_registry.get(data_name)
if df is None or df.empty:
continue
# Filter data based on geographic scope
filtered_df = self._filter_by_geography(df, geographic_scope, regions)
if filtered_df.empty:
continue
# Current capacity
capacity_col = self._find_column(filtered_df, ['capacity', 'beds', 'current_capacity', 'beds_current'])
if capacity_col:
# Ensure we're working with numeric data
filtered_df[capacity_col] = pd.to_numeric(filtered_df[capacity_col], errors='coerce')
total_capacity = filtered_df[capacity_col].sum()
results["total_capacity"] = total_capacity
# Capacity by facility type
type_col = self._find_column(filtered_df, ['type', 'facility_type'])
if type_col and type_col in filtered_df.columns:
capacity_by_type = filtered_df.groupby(type_col)[capacity_col].sum().to_dict()
results["capacity_by_type"] = capacity_by_type
# Capacity utilization
utilization_col = self._find_column(filtered_df, ['utilization', 'occupancy', 'occupancy_rate'])
if utilization_col:
# Ensure we're working with numeric data
filtered_df[utilization_col] = pd.to_numeric(filtered_df[utilization_col], errors='coerce')
avg_utilization = filtered_df[utilization_col].mean()
results["average_utilization"] = avg_utilization
# Utilization by facility type
if type_col and type_col in filtered_df.columns:
utilization_by_type = filtered_df.groupby(type_col)[utilization_col].mean().to_dict()
results["utilization_by_type"] = utilization_by_type
# Capacity trends
time_cols = [col for col in filtered_df.columns if any(year in col.lower() for year in ['2020', '2021', '2022', '2023', '2024'])]
if len(time_cols) >= 2:
trend_data = {}
for col in time_cols:
# Ensure we're working with numeric data
filtered_df[col] = pd.to_numeric(filtered_df[col], errors='coerce')
trend_data[col] = filtered_df[col].sum()
results["capacity_trends"] = trend_data
# Calculate growth rate
if len(time_cols) >= 2:
latest = time_cols[-1]
earliest = time_cols[0]
if trend_data[earliest] > 0: # Avoid division by zero
growth_rate = (trend_data[latest] - trend_data[earliest]) / trend_data[earliest] * 100
results["capacity_growth_rate"] = growth_rate
# Bed change analysis
prev_col = self._find_column(filtered_df, ['prev', 'previous', '2022', 'beds_prev', 'previous_beds'])
current_col = self._find_column(filtered_df, ['current', '2023', '2024', 'beds_current', 'staffed_beds', 'capacity'])
if prev_col and current_col:
# Ensure we're working with numeric data
filtered_df[prev_col] = pd.to_numeric(filtered_df[prev_col], errors='coerce')
filtered_df[current_col] = pd.to_numeric(filtered_df[current_col], errors='coerce')
# Calculate bed change
filtered_df['bed_change'] = filtered_df[current_col] - filtered_df[prev_col]
# Calculate percentage change
filtered_df['percent_change'] = filtered_df.apply(
lambda row: (row['bed_change'] / row[prev_col] * 100) if row[prev_col] != 0 else 0,
axis=1
)
# Zone/Region-level analysis
zone_col = self._find_column(filtered_df, ['zone', 'region', 'area', 'district'])
if zone_col:
# Ensure we're working with string data
filtered_df[zone_col] = filtered_df[zone_col].astype(str)
zone_summary = filtered_df.groupby(zone_col).agg({
current_col: 'sum',
prev_col: 'sum',
'bed_change': 'sum'
}).reset_index()
zone_summary['percent_change'] = zone_summary.apply(
lambda row: (row['bed_change'] / row[prev_col] * 100) if row[prev_col] != 0 else 0,
axis=1
)
results["zone_summary"] = zone_summary.to_dict('records')
# Find zones with largest changes
if not zone_summary.empty:
# Get zone with largest absolute decrease
if zone_summary['bed_change'].notna().any():
max_abs_decrease_idx = zone_summary['bed_change'].idxmin()
max_abs_decrease = zone_summary.loc[max_abs_decrease_idx]
results["max_absolute_decrease"] = max_abs_decrease.to_dict()
# Get zone with largest percentage decrease
if zone_summary['percent_change'].notna().any():
max_pct_decrease_idx = zone_summary['percent_change'].idxmin()
max_pct_decrease = zone_summary.loc[max_pct_decrease_idx]
results["max_percentage_decrease"] = max_pct_decrease.to_dict()
# Identify facilities with largest declines
facilities_decline = filtered_df.sort_values('bed_change').head(5)
if not facilities_decline.empty:
results["facilities_with_largest_declines"] = facilities_decline.to_dict('records')
return results
def _filter_by_geography(self, df: pd.DataFrame, geographic_scope: str, regions: List[str]) -> pd.DataFrame:
"""Filter dataframe based on geographic scope and regions"""
if geographic_scope == "Unknown" and not regions:
return df.copy()
# Try to find a geographic column
geo_col = self._find_column(df, ['province', 'state', 'region', 'zone', 'area', 'district'])
if geo_col is None:
return df.copy()
# Ensure we're working with string data
try:
df[geo_col] = df[geo_col].astype(str)
except Exception as e:
logger.warning(f"Error converting column {geo_col} to string: {str(e)}")
return df.copy()
# Create filters
filters = []
# Add geographic scope filter
if geographic_scope != "Unknown":
# Create a list of possible values for the geographic scope
scope_values = [geographic_scope.lower()]
# Add common abbreviations
abbreviations = {
# Canadian provinces
"alberta": "ab", "british columbia": "bc", "ontario": "on", "quebec": "qc",
"manitoba": "mb", "saskatchewan": "sk", "nova scotia": "ns", "new brunswick": "nb",
"prince edward island": "pe", "newfoundland": "nl", "yukon": "yt",
"northwest territories": "nt", "nunavut": "nu",
# US states
"alabama": "al", "alaska": "ak", "arizona": "az", "arkansas": "ar",
"california": "ca", "colorado": "co", "connecticut": "ct", "delaware": "de",
"florida": "fl", "georgia": "ga", "hawaii": "hi", "idaho": "id",
"illinois": "il", "indiana": "in", "iowa": "ia", "kansas": "ks",
"kentucky": "ky", "louisiana": "la", "maine": "me", "maryland": "md",
"massachusetts": "ma", "michigan": "mi", "minnesota": "mn", "mississippi": "ms",
"missouri": "mo", "montana": "mt", "nebraska": "ne", "nevada": "nv",
"new hampshire": "nh", "new jersey": "nj", "new mexico": "nm", "new york": "ny",
"north carolina": "nc", "north dakota": "nd", "ohio": "oh", "oklahoma": "ok",
"oregon": "or", "pennsylvania": "pa", "rhode island": "ri", "south carolina": "sc",
"south dakota": "sd", "tennessee": "tn", "texas": "tx", "utah": "ut",
"vermont": "vt", "virginia": "va", "washington": "wa", "west virginia": "wv",
"wisconsin": "wi", "wyoming": "wy"
}
if geographic_scope.lower() in abbreviations:
scope_values.append(abbreviations[geographic_scope.lower()])
try:
scope_filter = df[geo_col].str.lower().isin(scope_values)
filters.append(scope_filter)
except Exception as e:
logger.warning(f"Error creating scope filter: {str(e)}")
# Add region filters
if regions:
try:
region_filter = df[geo_col].str.lower().isin([r.lower() for r in regions])
filters.append(region_filter)
except Exception as e:
logger.warning(f"Error creating region filter: {str(e)}")
# Apply filters
if filters:
try:
combined_filter = filters[0]
for f in filters[1:]:
combined_filter = combined_filter | f
return df[combined_filter].copy()
except Exception as e:
logger.warning(f"Error applying filters: {str(e)}")
return df.copy()
def analyze_resource_allocation(self, relevant_data: List[str]) -> Dict[str, Any]:
"""Analyze resource allocation patterns"""
results = {}
for data_name in relevant_data:
df = self.data_registry.get(data_name)
if df is None or df.empty:
continue
# Staff analysis
staff_col = self._find_column(df, ['staff', 'employees', 'fte'])
if staff_col:
# Ensure we're working with numeric data
df[staff_col] = pd.to_numeric(df[staff_col], errors='coerce')
total_staff = df[staff_col].sum()
results["total_staff"] = total_staff
# Staff per bed ratio
capacity_col = self._find_column(df, ['capacity', 'beds'])
if capacity_col and capacity_col in df.columns:
# Ensure we're working with numeric data
df[capacity_col] = pd.to_numeric(df[capacity_col], errors='coerce')
df['staff_per_bed'] = df[staff_col] / df[capacity_col].replace(0, np.nan) # Avoid division by zero
avg_staff_per_bed = df['staff_per_bed'].mean()
results["staff_per_bed_ratio"] = avg_staff_per_bed
# Equipment analysis
equipment_cols = [col for col in df.columns if 'equipment' in col.lower()]
if equipment_cols:
equipment_summary = {}
for col in equipment_cols:
# Ensure we're working with numeric data
df[col] = pd.to_numeric(df[col], errors='coerce')
equipment_summary[col] = df[col].sum()
results["equipment_summary"] = equipment_summary
return results
def analyze_trends(self, relevant_data: List[str]) -> Dict[str, Any]:
"""Analyze trends in healthcare data"""
results = {}
for data_name in relevant_data:
df = self.data_registry.get(data_name)
if df is None or df.empty:
continue
# Find time-based columns
time_cols = [col for col in df.columns if any(year in col.lower() for year in ['2020', '2021', '2022', '2023', '2024'])]
if len(time_cols) >= 2:
trends = {}
# Calculate year-over-year changes
for i in range(1, len(time_cols)):
prev_year = time_cols[i-1]
curr_year = time_cols[i]
# Ensure we're working with numeric data
df[prev_year] = pd.to_numeric(df[prev_year], errors='coerce')
df[curr_year] = pd.to_numeric(df[curr_year], errors='coerce')
prev_total = df[prev_year].sum()
curr_total = df[curr_year].sum()
if prev_total > 0: # Avoid division by zero
change_pct = (curr_total - prev_total) / prev_total * 100
trends[f"{prev_year}_to_{curr_year}"] = {
"absolute_change": curr_total - prev_total,
"percentage_change": change_pct
}
results["year_over_year_trends"] = trends
return results
def identify_integration_opportunities(self, analysis_results: Dict[str, Any]) -> Dict[str, Any]:
"""Identify opportunities for AI integration and data enhancement"""
opportunities = {
"data_integration": [],
"ai_applications": [],
"enhanced_metrics": []
}
# Data integration opportunities
opportunities["data_integration"].append({
"opportunity": "Integrate real-time occupancy data",
"description": "Combine current facility data with real-time occupancy monitoring systems",
"benefit": "Enable dynamic resource allocation and surge planning"
})
opportunities["data_integration"].append({
"opportunity": "Incorporate demographic data",
"description": "Add population demographics and health needs data",
"benefit": "Improve demand forecasting and service planning"
})
# AI application opportunities
opportunities["ai_applications"].append({
"opportunity": "Predictive capacity modeling",
"description": "Use ML to forecast capacity needs based on trends and external factors",
"benefit": "Proactive resource planning and reduced wait times"
})
opportunities["ai_applications"].append({
"opportunity": "Optimization algorithms",
"description": "Implement AI for staff scheduling and resource allocation",
"benefit": "Improved efficiency and reduced operational costs"
})
# Enhanced metrics
opportunities["enhanced_metrics"].append({
"metric": "Patient flow efficiency",
"description": "Measure time from admission to discharge across facilities",
"benefit": "Identify bottlenecks and improve patient experience"
})
opportunities["enhanced_metrics"].append({
"metric": "Resource utilization index",
"description": "Composite metric combining staff, equipment, and space utilization",
"benefit": "Holistic view of operational efficiency"
})
return opportunities
# Helper methods
def _find_column(self, df, patterns):
"""Find the first column matching any pattern"""
if df is None or df.empty:
return None
for col in df.columns:
if any(pattern.lower() in col.lower() for pattern in patterns):
return col
return None
def _calculate_gini(self, values):
"""Calculate Gini coefficient for inequality measurement"""
if not values or len(values) < 2:
return 0
values = sorted(values)
n = len(values)
index = np.arange(1, n + 1)
total = np.sum(values)
if total == 0:
return 0
gini = (np.sum((2 * index - n - 1) * values)) / (n * total)
return gini
def _calculate_diversity_index(self, distribution):
"""Calculate Shannon diversity index"""
if not distribution:
return 0
total = sum(distribution.values())
if total == 0:
return 0
proportions = [count/total for count in distribution.values() if count > 0]
if not proportions:
return 0
return -sum(p * np.log(p) for p in proportions)
def _extract_geographic_scope(self, text):
"""Extract geographic scope from text"""
# Look for province/state names
provinces = [
"alberta", "british columbia", "ontario", "quebec", "manitoba",
"saskatchewan", "nova scotia", "new brunswick", "prince edward island",
"newfoundland", "yukon", "northwest territories", "nunavut"
]
states = [
"alabama", "alaska", "arizona", "arkansas", "california", "colorado",
"connecticut", "delaware", "florida", "georgia", "hawaii", "idaho",
"illinois", "indiana", "iowa", "kansas", "kentucky", "louisiana",
"maine", "maryland", "massachusetts", "michigan", "minnesota",
"mississippi", "missouri", "montana", "nebraska", "nevada",
"new hampshire", "new jersey", "new mexico", "new york",
"north carolina", "north dakota", "ohio", "oklahoma", "oregon",
"pennsylvania", "rhode island", "south carolina", "south dakota",
"tennessee", "texas", "utah", "vermont", "virginia", "washington",
"west virginia", "wisconsin", "wyoming"
]
text_lower = text.lower()
# Check for provinces
for province in provinces:
if province in text_lower:
return province.title()
# Check for states
for state in states:
if state in text_lower:
return state.title()
# Check for countries
if "canada" in text_lower:
return "Canada"
if "usa" in text_lower or "united states" in text_lower:
return "United States"
return "Unknown"
def _extract_time_period(self, text):
"""Extract time period from text"""
# Look for year patterns
years = re.findall(r'\b(20\d{2})\b', text)
if len(years) >= 2:
return f"{min(years)}-{max(years)}"
return "Unknown"
def _extract_facility_types(self, text):
"""Extract facility types from text"""
types = []
if "hospital" in text.lower():
types.append("Hospitals")
if "nursing" in text.lower() or "long-term" in text.lower():
types.append("Nursing homes")
if "clinic" in text.lower():
types.append("Clinics")
return types
def _extract_metrics(self, text):
"""Extract required metrics from text"""
metrics = []
if "bed" in text.lower():
metrics.append("Bed capacity")
if "occupancy" in text.lower():
metrics.append("Occupancy rates")
if "staff" in text.lower():
metrics.append("Staffing levels")
return metrics
def _extract_regions(self, text):
"""Extract specific regions mentioned in the scenario"""
# Look for region names in the scenario
regions = []
# Common region patterns - this could be expanded
region_patterns = [
r'([A-Z][a-z]+ (Zone|Region|Area|District))',
r'(North|South|East|West|Central)',
r'([A-Z][a-z]+ (City|County|State|Province))',
r'([A-Z][a-z]+)'
]
for pattern in region_patterns:
matches = re.findall(pattern, text)
for match in matches:
if isinstance(match, tuple):
regions.append(match[0])
else:
regions.append(match)
# Remove duplicates while preserving order
seen = set()
unique_regions = [r for r in regions if not (r in seen or seen.add(r))]
return unique_regions
def _identify_relevant_data(self, text):
"""Identify relevant datasets for the scenario"""
# Use data registry's find_related_datasets method
keywords = ["facility", "bed", "capacity", "healthcare", "hospital"]
return [item["name"] for item in self.data_registry.find_related_datasets(keywords)]