Spaces:
Runtime error
Runtime error
from controlnet_aux import ( | |
CannyDetector, | |
ContentShuffleDetector, | |
HEDdetector, | |
LineartAnimeDetector, | |
LineartDetector, | |
MediapipeFaceDetector, | |
MidasDetector, | |
MLSDdetector, | |
NormalBaeDetector, | |
OpenposeDetector, | |
PidiNetDetector, | |
SamDetector, | |
ZoeDetector, | |
) | |
import numpy as np | |
import cv2 | |
def pad64(x): | |
return int(np.ceil(float(x) / 64.0) * 64 - x) | |
def HWC3(x): | |
assert x.dtype == np.uint8 | |
if x.ndim == 2: | |
x = x[:, :, None] | |
assert x.ndim == 3 | |
H, W, C = x.shape | |
assert C == 1 or C == 3 or C == 4 | |
if C == 3: | |
return x | |
if C == 1: | |
return np.concatenate([x, x, x], axis=2) | |
if C == 4: | |
color = x[:, :, 0:3].astype(np.float32) | |
alpha = x[:, :, 3:4].astype(np.float32) / 255.0 | |
y = color * alpha + 255.0 * (1.0 - alpha) | |
y = y.clip(0, 255).astype(np.uint8) | |
return y | |
def safer_memory(x): | |
return np.ascontiguousarray(x.copy()).copy() | |
def resize_image_with_pad(input_image, resolution, skip_hwc3=False): | |
if skip_hwc3: | |
img = input_image | |
else: | |
img = HWC3(input_image) | |
H_raw, W_raw, _ = img.shape | |
k = float(resolution) / float(min(H_raw, W_raw)) | |
interpolation = cv2.INTER_CUBIC if k > 1 else cv2.INTER_AREA | |
H_target = int(np.round(float(H_raw) * k)) | |
W_target = int(np.round(float(W_raw) * k)) | |
img = cv2.resize(img, (W_target, H_target), interpolation=interpolation) | |
H_pad, W_pad = pad64(H_target), pad64(W_target) | |
img_padded = np.pad(img, [[0, H_pad], [0, W_pad], [0, 0]], mode='edge') | |
def remove_pad(x): | |
return safer_memory(x[:H_target, :W_target]) | |
return safer_memory(img_padded), remove_pad | |
def scribble_xdog(img, res=512, thr_a=32, **kwargs): | |
img, remove_pad = resize_image_with_pad(img, res) | |
g1 = cv2.GaussianBlur(img.astype(np.float32), (0, 0), 0.5) | |
g2 = cv2.GaussianBlur(img.astype(np.float32), (0, 0), 5.0) | |
dog = (255 - np.min(g2 - g1, axis=2)).clip(0, 255).astype(np.uint8) | |
result = np.zeros_like(img, dtype=np.uint8) | |
result[2 * (255 - dog) > thr_a] = 255 | |
return remove_pad(result), True | |
def none_preprocces(image_path:str): | |
return Image.open(image_path) | |
PREPROCCES_DICT = { | |
"Hed": HEDdetector.from_pretrained("lllyasviel/Annotators"), | |
"Midas": MidasDetector.from_pretrained("lllyasviel/Annotators"), | |
"MLSD": MLSDdetector.from_pretrained("lllyasviel/Annotators"), | |
"Openpose": OpenposeDetector.from_pretrained("lllyasviel/Annotators"), | |
"PidiNet": PidiNetDetector.from_pretrained("lllyasviel/Annotators"), | |
"NormalBae": NormalBaeDetector.from_pretrained("lllyasviel/Annotators"), | |
"Lineart": LineartDetector.from_pretrained("lllyasviel/Annotators"), | |
"LineartAnime": LineartAnimeDetector.from_pretrained( | |
"lllyasviel/Annotators" | |
), | |
"Zoe": ZoeDetector.from_pretrained("lllyasviel/Annotators"), | |
"Canny": CannyDetector(), | |
"ContentShuffle": ContentShuffleDetector(), | |
"MediapipeFace": MediapipeFaceDetector(), | |
"ScribbleXDOG": scribble_xdog, | |
"None": none_preprocces | |
} | |